gemalto”

security to be free

All information herein is either public information or is the property of and owned solely by Gemalto NV. and/or its subsidiaries
who shall have and keep the sole right to file patent applications or any other kind of intellectual property protection in
connection with such information.

Nothing herein shall be construed as implying or granting to you any rights, by license, grant or otherwise, under any
intellectual and/or industrial property rights of or concerning any of Gemalto’s information.

This document can be used for informational, non-commercial, internal and personal use only provided that:
» The copyright notice below, the confidentiality and proprietary legend and this full warning notice appear in all copies.

* This document shall not be posted on any network computer or broadcast in any media and no modification of any part of
this document shall be made.

Use for any other purpose is expressly prohibited and may result in severe civil and criminal liabilities.

The information contained in this document is provided “AS IS” without any warranty of any kind. Unless otherwise expressly
agreed in writing, Gemalto makes no warranty as to the value or accuracy of information contained herein.

The document could include technical inaccuracies or typographical errors. Changes are periodically added to the information
herein. Furthermore, Gemalto reserves the right to make any change orimprovement in the specifications data, information,
and the like described herein, at any time.

Gemalto hereby disclaims all warranties and conditions with regard to the information contained herein, including all
implied warranties of merchantability, fitness for a particular purpose, title and non-infringement. In no event shall
Gemalto be liable, whether in contract, tort or otherwise, for any indirect, special or consequential damages or any
damages whatsoever including but not limited to damages resulting from loss of use, data, profits, revenues, or
customers, arising out of or in connection with the use or performance of information contained in this document.

Gemalto does not and shall not warrant that this product will be resistant to all possible attacks and shall not incur,
and disclaims, any liability in this respect. Even if each product is compliant with current security standards in force
on the date of their design, security mechanisms' resistance necessarily evolves according to the state of the art in
security and notably under the emergence of new attacks. Under no circumstances, shall Gemalto be held liable for
any third party actions and in particular in case of any successful attack against systems or equipment
incorporating Gemalto products. Gemalto disclaims any liability with respect to security for direct, indirect,
incidental or consequential damages that result from any use of its products. It is further stressed that independent
testing and verification by the person using the product is particularly encouraged, especially in any application in
which defective, incorrect or insecure functioning could result in damage to persons or property, denial of service or
loss of privacy.

© Copyright 2009-12 Gemalto N.V. All rights reserved. Gemalto and the Gemalto logo are trademarks and service marks of
Gemalto N.V. and/or its subsidiaries and are registered in certain countries. All other trademarks and service marks, whether
registered or not in specific countries, are the property of their respective owners.

GEMALTO, B.P. 100, 13881 GEMENOS CEDEX, FRANCE.
Tel: +33 (0)4.42.36.50.00 Fax: +33 (0)4.42.36.50.90

Printed in France. Document Reference: DOC1256792A
July 16, 2012

www.gemalto.com g :

http//www.gemalto.com

Preface

Chapter 1

Chapter 2

Chapter 3

V4

Who Should Read This Book e Vi
Documentation Vi
CoNVveNntioNS e Vi
Typographical Conventions Vi
Additional Resources vii
For Further Help vii
IfYouFindan Error e vii
Overview 1
IDPrime .NET Smart Cards e 1
Oy OKI . . oo 1
IDGo 500 PKCS#11 Library e 2
Supported Platforms and Applications 3
WiNdoWs 3
LiNUX 3
Mac OS . .. 4
Applications Tested e 4
PKCS#11 Specifics 5
Key Sizes Supported e 5
Number of Simultaneous Reader Connections Supported 5
Instant Detection of NET USB Devices 5
File Cache 6
Configuration File e 7
PKCS#11 Methods Supported 8
Accessing Objects According to Session Type 10
SESSION TYPES . ..ot 10
Object TYPES . . ot 1
Authentication 11
Supported PKCS#11 Objects and Attributes 11
Cryptographic Mechanisms Supported 12
Cryptographic Algorithms 12
Hash Algorithms 12
Reading the Card Serial Number 13
Product Limitations 14
The Security Officer PIN 14
Installation 18
System Requirements e 18
COMPULET .« . . 18
Operating Systems 18
Peripherals e 19
Installing the IDGo 500 PKCS#11 Library 19
Pre-requisites e 19
Installing the IDGo 500 PKCS#11 Library 20

Configuring the PKCS#11 Security Module 20

O
O
)
—
0,
)
—
7p

iv IDGo 500 PKCS#11 Library for Windows User Guide

Chapter 4

Appendix A

Appendix B

Appendix C

Uninstalling the IDGo 500 PKCS#11 Library

Tasks

How to Get a Certificate
How to Import a Certificate in the IDPrime .NET Card
How to Delete a Certificate from the IDPrime .NETCard
How to View the Details of a Certificate in an IDPrime .NET Card
How to Unblock aUser PIN i
Howto Change aUser PIN e
How to Use E-mail Securely e

About Secure E-mail

Working with Mozilla Thunderbird.
How to View Secure Web Sites e

Mozilla Firefox

Sample Code

Cryptoki Header Files
Sample Code Files e
MAIN.C . .t
getinfo.C . ..
deleteall.c
AUmMpIt.C . .
eNrOllLC . . . e
GENKBY.C ot
l0adKEY.C . . oo e
PINCOAE.C
FANAOMLCttt e
SIgNIC . oo
slotevent.c e
Storeit.C .. e
tellme.C e
cryptoKi.h .

Troubleshooting

Conversion from .NET PKCS#112.1t02.2
Performance Problems With Memory Management
Mozilla Firefox and Thunderbird

Simultaneous Smart Cards

Fast User Switching e
Remote Desktop Connection
CheckPoint VPN Client NGX e
CitriX Server
Adobe Acrobat Reader

Configuring PKCS#11 in Mozilla

FirefoX . oo e
Thunderbird e

Appendix D

Appendix E

Terminology

Contents \%

The Minidriver Manager Tool 84
The .NET Utilities Tool 85

86
Abbreviations 86
GlOSSarY . oo 87

List of Figures

Figure 1 - Smart Card Cryptography Support for Different Platforms and Applications 3

Figure 2 - Revealing c\Users\AIlUSsers 7
Figure 3 - Supported PKCS#11 Objects and Attributes 12
Figure 4 - Install Shield Wizard - Ready To Install Window 20
Figure 5 - .NET Ultilities Portal — Manage Certificates 23
Figure 6 - .NET Ultilities Portal — Import Certificate 24
Figure 7 - NET Utilities Portal — Import Certificate — Password Prompt 24
Figure 8 - NET Utilities Portal — Import Certificate — Password Prompt 24
Figure 9 - Mozilla Firefox Encryption Options Dialog 25
Figure 10 - Password Required 25
Figure 11 - Certificate Manager Window 26
Figure 12 - File Name to Restore Window 26
Figure 13 - Choose Token Dialog Window 27
Figure 14 - Certificate Manager After Certificate Importation 27
Figure 15 - Certificate Details 29
Figure 16 - Mozilla Firefox Encryption Options Dialog 31
Figure 17 - Device Managert 32
Figure 18 - Change Master Password Window 32
Figure 19 - Thunderbird — Security Account Settings 34
Figure 20 - Thunderbird - Select Certificate 35
Figure 21 - Thunderbird — “Use Same Certificate” Message 35
Figure 22 - Thunderbird — Security Account Settings (2) 36
Figure 23 - Example Web Site Before Authentication 39
Figure 24 - User Identification Request Window 40
Figure 25 - Secured Web Page After Authentication 40
Figure 26 - Mozilla Firefox Encryption Options Dialog 80
Figure 27 - Device Manager 81
Figure 28 - Load PKCS#11 Device Window uv.... 81
Figure 29 - Device Manager After Module Configuration 82
Figure 30 - Thunderbird - Certificates Tab 83
Figure 31 - .NET Ultilities Portal — Security Warning 85
Figure 32 - NET Ultilities Portal Welcome Window 85

List of Tables

Table 1 - PKCS#11 Methods Supported 8
Table 2 - Access to Objects According to Session Type 11

This document introduces you to the IDGo 500 PKCS#11 Library for IDPrime .NET
smart cards and provides information about the installation, use and integration of this
library.

Who Should Read This Book

This guide is intended for system integrators who want to integrate the software with
other applications and for end-users.

It is assumed that users are familiar with IDPrime .NET smart cards/tokens and smart
card reader technology, as well as computer hardware and software.

It is assumed that the user of the IDGo 500 PKCS#11 library has:
= an understanding of the basic operations in a computer OS.

= administrative privileges for the computer on which the IDGo 500 PKCS#11 Library
will be installed.

Documentation

The IDGo 500 PKCS#11 library is delivered with the following documentation:

= IDGo 500 PKCS#11 Library for Windows User Guide (this document) - IDGo 500
PKCS11_Lib_.NET__Windows_User_Guide.pdf.

= A Release Notes file. This contains any relevant information about the installation
and the complete version history.

Conventions

The following conventions are used in this document:

Typographical Conventions

The IDGo 500 PKCS#11 library documentation uses the following typographical
conventions to assist the reader of this document.

Convention Example Description

Courier transaction Code examples.

Bold Type myscript.dil Actual user input or screen output.

> Select File > Open Indicates a menu selection. In this example you are
instructed to select the “Open” option from the “File”
menu.

Note: Example screen shots of the software are provided throughout this document to
illustrate the various procedures and descriptions. These screen shots were produced
with the IDGo 500 PKCS#11 library running on Windows XP.

Preface vii

Additional Resources

For further information or more detailed use of the IDGo 500 PKCS#11 library,
additional resources and documentation are available on the following web site:

www.gemalto.com/products/dotnet_card

For Further Help

You can find information on how to contact your Gemalto representative by clicking
Contact Us at the Gemalto web site, www.gemalto.com.

If You Find an Error

Gemalto makes every effort to prevent errors in its documentation. However, if you
discover any errors or inaccuracies in this document, please inform your Gemalto
representative. Please quote the document reference number found at the bottom of
the legal notice on the inside front cover.

www.gemalto.com
www.gemalto.com/products/dotnet_card

Overview

IDPrime .NET Smart Cards

Gemalto’s IDPrime .NET is the first ever implementation of a .NET Framework for
Smart Cards. It puts state of the art technology to the service of organizations
committed to take their IT Security and Identity & Access infrastructure to the next
level.

Two-factor authentication (2FA) solutions can help secure your company's digital
assets from end to end. IDPrime .NET comes equipped with support for 2 different 2FA
technologies: One Time Passwords (OTP) and X509 Certificates (PKI). Choose the
one that suits you best, or combine both at once for different uses.

IDPrime .NET cards empower developers to build services that take advantage of the
enhanced programming and communication capabilities of the .NET Framework and
the advanced security and cryptographic services that are the foundation of Gemalto
Smart Cards. Combined with the award winning SConnect technology, Smart Cards
and Tokens can now communicate with all kind of Web Services, and hefty client
based solutions can be replaced with zero footprint web based solutions.

IDPrime .NET smart cards incorporate a .NET framework in a smart card. In fact the
smart card can take several different forms:

= traditional smart card

= SIM plug

= converged badge

= connected and unconnected USB token

Cryptoki

Cryptoki is an application programming interface (API) with devices that hold
cryptographic information and perform cryptographic functions. It is specified in the
RSA standard PKCS#11 v2.20: Cryptographic Token Interface Standard.

The specification of the Cryptographic Token Interface Standard (PKCS #11) is
available at http://www.rsa.com/rsalabs/node.asp?id=2133.

The IDGo 500 PKCS#11 library is Gemalto’s implementation of Cryptoki, that grants
cryptographic applications access to the IDPrime .NET smart card. The interface is
compliant with a coherent subset of the PKCS#11 v2.20 standard.

http://www.rsa.com/rsalabs/node.asp?id=2133

Overview 2

PKCS#11 does not implement the entire Cryptoki standard. For example, the IDPrime
.NET smart card cannot perform direct symmetric key encryption operations such as
the Data Encryption Standard (DES) and Rivest’s Cipher (RC2). For a full list of the
methods that are supported, please refer to “PKCS#11 Methods Supported” on page 8.

Note: The IDGo 500 PKCS#11 library is fully compliant with PKCS#11 v2.10 and
partially with PKCS#11 v2.20.

IDGo 500 PKCS#11 Library

This library is a cryptographic library that manages simple access to corporate
networks while maintaining the highest level of security. It is for individual users, who
want to use IDPrime .NET smart cards and compatible PC/SC card readers to protect
information and transactions made via computers, including stand-alone workstations
and Citrix client-server environments.

By default, cryptographic support for IDPrime .NET cards is provided by Base CSP
(Microsoft’s default software library). Applications that support CSP architecture, such
as Microsoft Word, only need the CSP mini-driver that comes automatically with
Microsoft Vista and is available as a Windows Utility for Windows XP. They do not need
this IDGo 500 PKCS#11 library. Digital certificates are stored on smart cards according
to the CSP architecture.

The IDGo 500 PKCS#11 library is an extension to CSP, to provide cryptographic
support to applications (such as Mozilla Firefox) and operating systems (such as Mac
and Linux) that do not support a CSP architecture. In this way, the applications can use
the digital certificates stored on the card. For more details about which applications use
CSP and which need the IDGo 500 PKCS#11 library, please refer to “Supported
Platforms and Applications” on page 3.

With this IDGo 500 PKCS#11 library you can use the digital certificates stored on
IDPrime .NET smart cards to:

Sign electronic documents.

Open and verify signed documents.

Send and receive secure e-mail.

Connect securely with a Web server.

Authenticate yourself when accessing desktop, network, and Web applications
Log on to a computer securely.

Lock and unlock a computer.

The IDGo 500 PKCS#11 library is implemented as a set of C language function calls
supplied as a C header file and Dynamic Link Libraries (DLLs).

Function calls are used to build smart card applications that require medium level
cryptography, such as digital signatures and secure messaging applications. For
example, C_SetPIN allows the card user to change the PIN number of the card in the
reader.

Application developers can use the IDGo 500 PKCS#11 library to:

Load and generate RSA Keys

Create RSA digital signatures

Manage PIN codes

Store certificates

Store miscellaneous data specific to an application, for example, user profiles and
bookmarks

= Generate secure random numbers.

3 IDGo 500 PKCS#11 Library for Windows User Guide

Supported Platforms and Applications

Windows

Linux

The IDGo 500 PKCS#11 library allows IDPrime .NET smart cards to work on Windows,
Mac and Linux operating systems (OS).

“Figure 1” on page 3 shows which cryptographic security modules are used by which
applications for these three different OS.

Figure 1 - Smart Card Cryptography Support for Different Platforms and
Applications

sy
5| 21 f@

B

- AN AR -
Inaows Vista [¢
Windows™ Linux Mac OS
(" CAPI+ CSP (%) I

Tokend]

: l PKCS#1L l PKCS#1L l PKCS#11
CNG + KSP (Vista) I\

Protiva® .NET

@ A B L
Fatty James:
e

o gemalto’

Microsoft applications such as Internet Explorer, Outlook, Office, MS VPN, EFS,
Windows Logon, ILM use the Microsoft CAPI/Base CSP to provide cryptographic
services via Smart Cards. It is also used by a growing number of third party
applications, such as Passlogix v-Go., Evidian ESSO, Quest QSSO, Checkpoint &
Cisco VPN, Verisign, to name just a few.

The PKCS#11 module used to be the standard CSP and is still used by many major
third party applications running in Windows, such as Mozilla Firefox & Thunderbird,
Adobe Acrobat and others.

Gemalto’s IDGo 500 PKCS#11 library is the PKCS#11 security module.

On Linux OS, there is no Microsoft CAPI/CSP, so all applications providing smart card
cryptographic services use the PKCS#11 module.

Overview 4

Mac OS

On Mac OS, there is no Microsoft CAPI/CSP. All native Apple applications (Mac Logon,
Safari, mail client and so on) use a Mac OS proprietary cryptographic architecture
called Tokend. This is also used by Microsoft's Office package for Mac OS. Several

other third party applications, such as Adobe Acrobat, Mozilla Firefox & Thunderbird
use the PKCS#11 security module.

For Mac OS 10.6 (Snow Leopard) and 10.7 (Lion), Gemalto’s IDGo 500 PKCS#11
library is the PKCS#11 security module + Tokend.

Applications Tested

For information about the applications that have been tested and validated with your
version of the IDGo 500 PKCS#11 library, please refer to the Release Notes that
accompany it. For the latest information about the applications that have been tested,
please refer to the product catalog at www.gemalto.com.

www.gemalto.com

PKCS#11 Specifics

This chapter presents some detailed information about the IDGo 500 PKCS#11 library
and IDPrime .NET cards.

Key Sizes Supported

The .NET V2 smart card supports 1024-bit and 2048-bit keys.

The .NET V2+ and IDPrime .NET smart cards support key lengths from 512 bits to
2048 bits in steps of 128 bits (512, 640, 768, 896, 1024, 1152, 1280, 1408, 1536, 1664,
1792, 1920, 2048).

Number of Simultaneous Reader Connections
Supported

The IDGo 500 PKCS#11 library can manage up to five smart card reader connections.
Beyond this, a CKR_HOST_MEMORY error occurs when you call the C_GetSlotList
function.

Instant Detection of .NET USB Devices

The IDGo 500 PKCS#11 library can detect the insertion and withdrawal of .NET USB
Devices. These devices contain a smart card. When this type of device is inserted, the
IDGo 500 PKCS#11 library automatically creates a PKCS#11 slot dedicated to this
type of reader.

The library has five permanent static reader slots. When an application calls the
C_GetSlotList function, the IDGo 500 PKCS#11 library returns these five empty
reader slots by default. When a .NET USB device is inserted, the IDGo 500 PKCS#11
library indicates that an event has occurred for the slot concerned. The application that
calls the C_WaitForSlotEvent function (regardless of whether it is in blocking mode or
not) is able to receive this event. The application can call the C_GetSlotList function at
any time in order to know which slots are available.

This new feature enables an application such as Firefox to detect the insertion or
withdrawal of .NET USB devices while it is running.

PKCS#11 Specifics 6

File Cache

In order to improve the performance of the IDGo 500 PKCS#11 library, it is now
possible to activate a permanent file cache on the hard disk of the computer where the
IDGo 500 PKCS#11 library is installed. The user can choose whether to activate the
cache or not by means of the IDGo 500 PKCS#11 library configuration file. By default,
the cache is activated.

When the file cache is activated, all the card’s read and write operations are stored in
the permanent cache. When possible, the IDGo 500 PKCS#11 library then uses the
data stored in the cache rather than the card itself.

Initially the cache is empty. When the IDGo 500 PKCS#11 library needs information to
perform its current operation, it first looks in the cache. If the information is not there,
the IDGo 500 PKCS#11 library reads the information from the card and stores it in the
permanent cache. The permanent cache file is a simple binary file whose name is the
card’s serial number. As long as the card’s contents do not change, the file cache does
not change.

The IDGo 500 PKCS#11 library monitors the card to see if it is modified (for example
the addition or deletion of a card certificate). In such a case, the permanent file cache is
destroyed and recreated to contain the new contents of the card.

Note: Only public information is stored in the file cache. PINs and private keys are
never stored there.

By default, the file cache is put in a fixed place, in order to be sure that the IDGo 500
PKCS#11 library can find it. In Windows, this is in the directory “C:\Documents and
Settings\All Users\Application Data\Gemalto\DotNet PKCS11” for Windows XP and
Server 2003 and in “C:\Users\All Users\Gemalto\DotNet PKCS11” for Windows Vista/
Server 2008/Seven/Server 2008 R2.

Revealing the All Users Folder

If C:\Users\All Users is not visible, modify the Advanced Settings in Windows as
follows:

1 Open Windows Explorer.

2 In Organize, choose Folder and Search Options.
3 In Folder Options, click the View tab.
4

In Advanced Settings, for Hidden files and folders, choose Show hidden files,
folders and drives and clear the box Hide protected operating system files as
shown in the following figure:

7

IDGo 500 PKCS#11 Library for Windows User Guide

Figure 2 - Revealing c:\Users\All Users

Folder Options @
General | View | Search

Folder views
You can apply the view (such as Details or lcons) that
you are using for this folder to all folders of this type.

{ Aopyto Folders | [Beset Folders

Advanced settings:

Files and Folders -

[] Always show icons. never thumbnails

] Aways show menus

Display file icon on thumbnails

Display file size information in folder tips

[Display the full path in the title bar (Classic thems only)
Hidden files and folders

m

() Dont show hidden files, folders, or drives
@ Show hidden files, folders, and drives
Hide empty drives in the Computer folder
[] Hide extensions for known file types
[] Hide protected operating system files (Recommended) | =

5 Click OK to close the window.

Configuration File

The IDGo 500 PKCS#11 library reads a configuration file when started. This file
contains the following information:

= Activation (or not) of the log file. The log file is located in the same directory as the
configuration file.

= Activation (or not) of the cache file described in the previous section.
The configuration file is called “Gemalto.NET.PKCS11.ini and is in the following format.

; === Gemalto .NET PKCS#11 configuration file ===

; === Log Section

[Log]

; Enable the log

; Value: 0 to disable the log or 1 to enable the log
Enable = 0

; === Cache Section

[Cache]

; Enable the disk cache

; Value: 0 to disable the cache or 1 to enable the cache
Enable = 1

If the configuration file is not present, the following default values are used; cache file
but no log file.

By default, the configuration file is put in a fixed place, in order to be sure that the IDGo
500 PKCS#11 library can find it. In Windows, this is in the directory “C:\Documents and
Settings\All Users\Application Data\Gemalto\DotNet PKCS11” for Windows XP and

PKCS#11 Specifics

Server 2003 and in “C:\Users\All Users\Gemalto\DotNet PKCS11” for Windows Vista/
Server 2008/Seven/Server 2008 R2. If C:\Users\All Users is not visible, follow the
instructions in “Revealing the All Users Folder” on page 6.

PKCS#11 Methods Supported

Not all the PKCS#11 interface methods specified in the PKCS#11 v2.20 are
implemented in the IDGo 500 PKCS#11 library. The following table lists them all and

indicates which ones are not supported.

Table 1 - PKCS#11 Methods Supported

8

Category Function Description
General purpose C_lInitialize Initializes Cryptoki
functions
C_Finalize Cleans up miscellaneous Cryptoki-associated
resources
C_Getlnfo Obtains general information about Cryptoki

C_GetFunctionList

Obtains entry points of Cryptoki library functions

Slot and token
management
functions

C_GetSlotList

Obtains a list of slots in the system

C_GetSlotInfo

Obtains information about a particular slot

C_GetTokenlInfo

Obtains information about a particular token

C_WaitForSlotEvent

Waits for a slot event (token insertion, removal,
etc.) to occur

C_GetMechanismList

Obtains a list of mechanisms supported by a
token

C_GetMechanisminfo

Obtains information about a particular
mechanism

C_InitToken Initializes a token
C_InitPIN Initializes the user PIN
C_SetPIN Modifies the PIN of the current user

Session
management
functions

C_OpenSession

Opens a connect ion between an application and
a particular token or sets up an application
callback for token insertion

C_CloseSession

Closes a session

C_CloseAllSessions

Closes all sessions with a token

C_GetSessionInfo

Obtains information about the session

C_GetOperationState

NOT SUPPORTED

C_SetOperationState

NOT SUPPORTED

C_Login

Logs into a token

C_Logout

Logs out from a token

9 IDGo 500 PKCS#11 Library for Windows User Guide

Table 1 - PKCS#11 Methods Supported (continued)

Category

Function

Description

Object management
functions

C_CreateObject

Creates an object

C_CopyObject

NOT SUPPORTED

C_DestroyObject

Destroys an object

C_GetObjectSize

Obtains the size of an object in bytes

C_GetAttributeValue

Obtains an attribute value of an object

C_SetAttributeValue

Modifies an attribute value of an object

C_FindObjectsInit

Initializes an object search operation

C_FindObjects

Continues an object search operation

C_FindObjectsFinal

Finishes an object search operation

Encryption functions

C_Encryptinit

Initializes an encryption operation

C_Encrypt

Encrypts single-part data

C_EncryptUpdate

Continues a multiple-part encryption operation

C_EncryptFinal

Finishes a multiple-part encryption operation

Decryption functions

C_Decryptlnit

Initializes a decryption operation

C_Decrypt

Decrypts single-part encrypted data

C_DecryptUpdate

Continues a multiple-part decryption operation

C_DecryptFinal

Finishes a multiple-part decryption operation

Message digesting
functions

C_Digestlnit

Initializes a message-digesting operation

C_Digest

Digests single-part data

C_DigestUpdate

Continues a multiple-part digesting operation

C_DigestKey NOT SUPPORTED

C_DigestFinal Finishes a multiple-part digesting operation
Signing and MACing | C_Signinit Initializes a signature operation
functions

C_Sign Signs single-part data

C_SignUpdate

Continues a multiple-part signature operation

C_SignFinal Finishes a multiple-part signature operation
C_SignRecoverlnit NOT SUPPORTED
C_SignRecover NOT SUPPORTED

Functions for
verifying signatures
and MACs

C_Verifylnit

Initializes a verification operation

C_Verify

Verifies a signature on single-part data

C_VerifyUpdate

Continues a multiple-part verification operation

C_VerifyFinal Finishes a multiple-part verification operation
C_VerifyRecoverlnit NOT SUPPORTED
C_VerifyRecover NOT SUPPORTED

PKCS#11 Specifics 10

Table 1 - PKCS#11 Methods Supported (continued)

Category Function Description

Dual-purpose C_DigestEncryptUpdate | NOT SUPPORTED

cryptographic

functions C_DecryptDigestUpdate | NOT SUPPORTED
C_SignEncryptUpdate NOT SUPPORTED
C_DecryptVerifyUpdate NOT SUPPORTED

Key management
functions

C_GenerateKey

Generates a secret key

C_GenerateKeyPair

Generates a public-key/private-key pair

C_WrapKey NOT SUPPORTED
C_UnwrapKey NOT SUPPORTED
C_DeriveKey NOT SUPPORTED

Random number
generation functions

C_SeedRandom

Mixes in additional seed material to the random
number generator

C_GenerateRandom

Generates random data

Parallel function C_GetFunctionStatus NOT SUPPORTED
management

functions C_CancelFunction NOT SUPPORTED
Callback function NOT SUPPORTED

Proprietary Gemalto
functions

C_GetCardProperty

Calls the GetCardProperty in the .NET minidriver
and uses the same parameters. For a
description of this function, please refer to the
IDPrime .NET Smart Card Integration Guide.

C_SetCardProperty

Calls the SetCardProperty in the .NET minidriver
and uses the same parameters. For a
description of this function, please refer to the
IDPrime .NET Smart Card Integration Guide.

Accessing Objects According to Session Type

Cryptoki requires that an application open one or more sessions with a token to gain
access to the token's objects and functions. A session provides a logical connection
between the application and the token.

Session Types

A session can be a read/write (R/W) session or a read-only (R/O) session. Read/write
and read-only refer to the access to token objects, not to session objects (see “Object

Types”).

Sessions where no user has authenticated him or herself with the device are referred
to as public sessions (R/O Public or R/W Public). Once the user who owns the token
authenticates him/herself with the token, the session is referred to as a user session
(R/O User or R/W User). Sessions where the Security Officer has authenticated him/
herself with the token are referred to as R/W SO sessions (R/O SO sessions are not

possible).

1"

IDGo 500 PKCS#11 Library for Windows User Guide

Cryptoki supports multiple sessions on multiple tokens. An application may have one or
more sessions with one or more tokens. In general, a token may have multiple
sessions with one or more applications. A particular token may allow an application to
have only a limited number of sessions-or only a limited number of read/write sessions-
- however.

Object Types

Objects that reside on the token are referred to as token objects. Objects that exist only
for the duration of a session are referred to as session objects.

When a session is closed, any session objects which were created in that session are
destroyed. This holds even for session objects which are “being used” by other
sessions. That is, if a single application has multiple sessions open with a token, and it
uses one of them to create a session object, then that session object is visible through
any of that application's sessions. However, as soon as the session that was used to
create the object is closed, that object is destroyed.

Authentication

In public sessions, an application has R/O access to all public objects (token and
session). After it opens a session, an application has access to the token's public
objects. All threads of a given application have access to exactly the same sessions
and the same session objects. No private objects can be accessed.

If the Security Officer authenticates him/herself, the application has Read/Write access
to all public objects (token and session). Private objects still cannot be accessed.

To access private objects (token and session), the normal user must log in and be
authenticated.

Note: Creating or deleting an object requires read/write access to it, for example, a “R/
O User Functions” session cannot create or delete a token object. Creating or deleting
an object is not allowed from any Public session. The user must be logged to create or
delete public and private token objects.

The following table summarizes the kind of access each type of session has to each
type of object.

Table 2 - Access to Objects According to Session Type

Type of session

Type of object R/O R/W R/O R/W R/W
Public Public User User SO

Public session object R/O R/O R/W R/W R/W

Private session object R/W R/W

Public token object R/O R/O R/O R/W R/W

Private token object R/O R/W

Supported PKCS#11 Objects and Attributes

Cryptoki recognizes a number of classes of objects, as defined in the
CK_OBJECT_CLASS data type. An object consists of a set of attributes, each of which
has a given value. Each attribute that an object possesses has precisely one value.
The following figure illustrates the high-level hierarchy of the Cryptoki objects and
some of the attributes they support:

PKCS#11 Specifics

Figure 3 - Supported PKCS#11 Objects and Attributes

12

Object
Class
Storage Mechanism
Mechanism type
Token il
Private
Label
Modifiable
Key
Data \ .
Public Key
Application
Object Identifier .
Value Certificate .
Private Key

The IDGo 500 PKCS#11 library does not support Hardware Feature objects and
Domain Parameters objects. Theses objects were introduced in the 2.20 version of
the RSA standard. The IDGo 500 PKCS#11 library only deals with the object hierarchy

specified in the 2.10 version.

The IDGo 500 PKCS#11 library does not support any kind of Secret Key object.
Regarding Certificates, only X.509 public key certificate objects (certificate type

CKC_X_509) are supported.

Regarding the attributes of the objects, several new attributes were introduced in the
2.20 version of the RSA standard. The IDGo 500 PKCS#11 library only deals with the

attributes specified in the 2.10 version.

Regarding Private Key objects, the value of the key is never extractable.

Cryptographic Mechanisms Supported
Cryptographic Algorithms

The IDGo 500 PKCS#11 library supports the RSA algorithm only. It supports the

following mechanism types defined in PKCS#11 v2.20.
s CKM_RSA_PKCS for sign, verify, encrypt and decrypt operations
s CKM_RSA_X_ 509 for sign, verify, encrypt and decrypt operations
CKM_SHA256_RSA_PKCS for sign and verify operations
CKM_MD5_RSA_PKCS for sign and verify operations
CKM_SHA1_RSA_PKCS for sign and verify operations

Symmetric keys are not supported.

Hash Algorithms

The IDGo 500 PKCS#11 library supports the MD5, SHA-1 and SHA-256 hash
algorithms, that is, the following mechanism types defined in PKCS#11 v2.20.

13 IDGo 500 PKCS#11 Library for Windows User Guide

« CKM_MD5
= CKM_SHA_1
= CKM_SHA256

Reading the Card Serial Number

The 12-byte IDPrime .NET card serial number (CSN) can be read in one of the
following ways:

= Adirect command to the card (GetCardProperty) which can return either the CSN
or GUID values. For more details, please refer to the IDPrime .NET Smart Card
Integration Guide.

= By using Gemalto’s Minidriver Manager tool or .NET ultilities web tool that send a
command directly to the card and return its CSN value.

= Via the IDGo 500 PKCS#11 library, by using the C_GetTokenlInfo function. For
more details, see “IDGo 500 PKCS#11 Library”.

The IDGo 500 PKCS#11 library interprets the CSN differently to the first two methods.

Direct Command, Minidriver Manager and .NET Utilities Tools

These three methods both read the CSN directly from the card and return it as a 24-
digit (or 12-byte) number as defined in the Microsoft Minidriver specification. This
number is the unique chip serial number.

The card can also return a GUID property (or card ID file content) that includes the
CSN. This GUID is 16-bytes and is built as follows:

O0x2E 4E 45 54 (4-byte fixed value) || CSN (12 bytes)

Note: Please refer to “Appendix D - The Minidriver Manager Tool” before using the
Minidriver Manager. Please refer to “Appendix E - The .NET Utilities Tool” for
information on how to access the .NET Utilities tool.

To read the CSN and GUID with the Minidriver Manager:

1 Start the Minidriver Manager and insert the IDPrime .NET card in the reader.
2 Click Connect.

3 Inthe Select Smart Card dialog, select the correct reader and click OK.
The CSN and GUID display in the right panel.

To read the CSN with the .NET Utilities Tool:

1 Access the .NET Utilities tool and insert the IDPrime .NET card in the reader as
described in “Appendix E - The .NET Utilities Tool”.

2 Inthe .NET Utilities Portal, click Device Information in the left panel.
The CSN displays as Serial Number in the right panel under Device Attributes.

IDGo 500 PKCS#11 Library

The IDGo 500 PKCS#11 library performs an MD5 hash of the CSN provided by the
minidriver giving a result of 16-bytes. As the C_GetTokenlInfo string is only 16 bytes it
can display 16 characters of the hash result only in ASCII format. These 16 characters
are the 8 MSB (leftmost bytes) of the hash result.

Example:

PKCS#11 Specifics 14

1 The IDGo 500 PKCS#11 library requests the 12-byte Card Serial Number (CSN)
from the card ID file:

0x57 0x01 0x13 0x51 0x26 0xC7 0xD6 0x10 0x29 0x27 OxFF OxFF

2 IDGo 500 PKCS#11 library performs an MD5 hash on the CSN giving a 16-byte
result:

0x05 0xCB 0x00 0x3D 0x76 0xD3 OxE9 0x4F 0x74 0x13 0xD8 0x74 0x38 0x8C
OxBF 0xB4

3 The IDGo 500 PKCS#11 library transforms the hash into an ASCII string.

Finally it fills the serialNumber field of the TokenlInfo structure (on 16 bytes) with the
first 16 characters of the ASCII string: “05CB003D76D3E94F” corresponding to the
8 MSB of the hash.

Product Limitations

The IDGo 500 PKCS#11 library can manage up to 15 key pairs. There is no limit for the
number of data objects.

Nevertheless, the real limitation of the IDGo 500 PKCS#11 library is the amount of free
memory available on the card. This amount can vary from card to card depending on
the number of applications present in the card.

The Security Officer PIN

The PKCS#11 specification defines the Security Officer (SO) PIN as the PIN that
unblocks a user’s PIN. It is also often known as the Administrator’'s PIN or the Unblock
PIN (PUK).

The concept of an SO PIN does not exist in the .NET smart card specification. Instead,
the specification defines a 24-byte administrator key. During mutual authentication
between the middleware on the computer and the .NET smart card, the middleware
asks for a 16-byte random challenge from the .NET card. It then computes a 16-byte
response using the 24-byte Administration key and sends this response to the card.
The card compares the response with the response it has calculated itself and if they
agree, authenticates the middleware.

For this reason and to be compliant with the PKCS#11 specification, the SO PIN is the
same key as the 24-byte administrator key. The IDGo 500 PKCS#11 library manages
the challenge-response exchange using this key to perform all cryptographic
operations requiring the SO PIN.

When blank IDPrime .NET smart cards are delivered, this value is 24 bytes with the
value 0x00.

Caution: The security of the IDPrime .NET card is based upon the SO PIN. Itis
therefore very important to change the value from the default one.

The following sample code, provides an example of how you can call the C_InitToken
Method using the SO PIN.

#include <memory.h>
#include <stdio.h>
#include <string>

#include "cryptoki.h"

15 IDGo 500 PKCS#11 Library for Windows User Guide

int main(int argc, char* argv[])
{
// Initialize the cryptoki
CK RV rv = C Initialize(NULL PTR);
if(CKR OK != rv)
{
printf("\n## ERROR - C Initialize failed <%#02x> ##\n", rv);
printf("Press enter to exit...");
getchar();
return 1;
}
printf ("\n== Cryptoki initialized ==\n");

// Display the cryptoki information
CK_INFO info;
memset (&info, 0, sizeof(CK INFO));
rv = C_GetInfo(&info);
if (CKR OK != rv)
{
printf ("\n## ERROR - C GetInfo failed <%#02x> ##\n", rv);
printf("Press enter to exit...");
getchar();
return 1;
}
printf ("\n== Cryptoki Information ==\n");
printf("C GetInfo - cryptokiVersion <%d.%d>\n",
info.cryptokiVersion.major, info.cryptokiVersion.minor);
printf("C GetInfo - manufacturerID <%.*s>\n", 32, info.manufacturerID
)i
printf("C GetInfo - flags <%ld>\n", info.flags);
printf("C GetInfo - libraryDescription <%.*s>\n", 32,
info.libraryDescription);
printf("C_GetInfo - libraryVersion <%d.%d>\n\n",
info.libraryVersion.major, info.libraryVersion.minor);

// Retreive all the available slots (reader with smartcard inside)
CK SLOT ID aSlotList[10 I;
memset (aSlotList, 0, sizeof(aSlotList));
CK_ULONG ulCount = sizeof(aSlotList) / sizeof(CK SLOT ID);
rv = C_GetSlotList(TRUE, aSlotList, &ulCount);
if (CKR OK != rv)
{
printf ("\n## ERROR - C GetSlotList failed <%$#02x> ##\n", rv);
printf("Press enter to exit...");
getchar();
return 1;

if(0 == ulCount)
{
printf ("\n## ERROR - No slot available. Insert a smartcard into a
reader. ##\n");
printf("Press enter to exit...");
getchar();
return 1;

printf("\n== Slot Information ==\n");
// Display the slot information
for(size t 1 = 0 ; 1 < ulCount ; i++)

PKCS#11 Specifics 16

CK _SLOT INFO slotInfo;
memset (&slotInfo, 0, sizeof(CK SLOT INFO));
rv = C_GetSlotInfo(aSlotList[i], &slotInfo);
if (CKR OK == rv)
{
printf("slot[%d] - slotDescription <%.*s>\n", aSlotList[i],
64, slotInfo.slotDescription);
printf("slot[%d] - manufacturerID <%.*s>\n", aSlotList[i], 32,
slotInfo.manufacturerID);
printf("slot[%d] - flags <%1d>\n", aSlotList[i],
slotInfo.flags);
printf("slot[%d] - hardwareVersion <%d.%d>\n", aSlotList[i 1,
slotInfo.hardwareVersion.major, slotInfo.hardwareVersion.minor);
printf("slot[%d] - firmwareVersion <%d.%d>\n\n", aSlotList[i],
slotInfo.firmwareVersion.major, slotInfo.firmwareVersion.minor);

}

// Take the first available slot
CK_SLOT ID slotId = aSlotList[0];

// Prepare the ADMIN key as PKCS#11 PIN SO
CK_CHAR aPinSo[24] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00, 0x00,
0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,
0x00, 0x00,
0x00, 0x00, 0x00, 0x00 };
CK_ULONG ulPinSoLen = (CK_ULONG) sizeof(aPinSo);

// Prepare the new token label

std::string s = "My label for the token";

CK_CHAR aLabel[32];

memset (aLabel, ' ', sizeof(alLabel));

size t 1 = (sizeof(alabel) <= s.length()) ? sizeof(aLabel)
s.length();

memcpy (alLabel, s.c str(), 1);

// Init token
rv = C_InitToken(slotId, aPinSo, ulPinSoLen, alLabel);
if (CKR OK != rv)
{
printf ("\n## ERROR - C GetSlotList failed <%#02x> ##\n", rv);
printf("Press enter to exit...");
getchar();
return 1;
}

printf ("\n== Token initialized ==\n");

// Release the cryptoki
rv = C Finalize(NULL PTR);
if (CKR OK != rv)
{
printf("\n## ERROR - C Finalize failed <%#02x> ##\n", rv);
printf("Press enter to exit...");
getchar();
return 1;
}
printf ("\n== Cryptoki released ==\n");

17 IDGo 500 PKCS#11 Library for Windows User Guide

printf("Press enter to exit...");
getchar();

return 0;

Installation

This chapter discusses information related to the installation of the IDGo 500 PKCS#11
library, such as:

= The hardware and software you need to use the library.
= How to install the library on your computer.

System Requirements

The following sections describe the hardware, operating systems, peripherals and
software you need to use the IDGo 500 PKCS#11 library. You must have administrator
rights to the computer on which you are installing the library.

Computer

The workstation must meet the normal system requirements to run the version of the
OS installed.

Operating Systems

The IDGo 500 PKCS#11 library comes in two versions, one for 64—bit operating
systems and one for 32-bit operating systems (OS).

For a list of the operating systems supported by the IDGo 500 PKCS#11 library, please
refer to the Release Notes.

19 IDGo 500 PKCS#11 Library for Windows User Guide

Peripherals
The IDGo 500 PKCS#11 library requires the following peripherals:

= A PC/SC compatible reader. Depending on the type of reader, you may also need a
USB port on the computer to connect it.

You can find details about Gemalto’s smart card readers at:

www.gemalto.com/readers/index.html

You can download the drivers for Gemalto’s readers at:
http://support.gemalto.com/?id=184#292

Smart Cards

The following types of IDPrime .NET smart card are supported:

= .NETV2

= .NETV2+

= IDPrime .NET (.NET V3 operating system)

= All devices containing any of the above 3 smart cards such as:
— |IDBridge tokens
— IDPrime .NET tokens

Note: Although .NET v2.0 and v2+ smart cards are supported, the IDGo 500
PKCS#11 library has been designed to take advantage of the latest enhancements
introduced in the .NET v3 Smart Card OS. Therefore, Gemalto highly recommends
you use IDPrime .NET smart cards and IDBridge devices for the IDGo 500 PKCS#11
library.

Installing the IDGo 500 PKCS#11 Library

Pre-requisites

Smart Card Reader Driver

The smart card reader driver must be installed on the system. Download the latest
version from your smart card reader vendor web site. If your smart card reader is a
Gemalto smart card reader, you can download its corresponding driver from
support.gemalto.com.

Caution: This driver is essential, otherwise the IDGo 500 PKCS#11 library will not
work on your computer.

PC/SC

The PC/SC layer must be installed on your system. This is included with all versions of
Windows from XP to Windows 7 inclusive.

www.gemalto.com/readers/index.html
http://support.gemalto.com/?id=184#292
support.gemalto.com

Installation 20

Installing the IDGo 500 PKCS#11 Library

Caution: Before installing the software, make sure you disconnect all devices (smart
cards/tokens).

To install the IDGo 500 PKCS#11 library:

1 Locate the IDGo500PKCS11Libraries.msi file. It should be in the same location as
where you found this reference manual. If for some reason, you cannot find it, you
can download it from:

http://www.gemalto.com/products/dotnet_card/resources!/libraries.html?toggler=0

2 Double-click the IDGo500PKCS11Libraries.msi file. This starts the InstallShield
Wizard.

3 Wait until the Welcome window appears and click Next.

In the License Agreement window, accept the terms and click Next.
The Ready to Install window appears as shown in “Figure 4”.

Figure 4 - Install Shield Wizard - Ready To Install Window

i IDGo 500 PKCS#11 Library for IDPrime .MET Smart Cards - InstallShiel... PX|

Ready to Install the Program

The wizard is ready to beqgin installation,

Click. Install ko beqin the installation,

If waou wank to review or change any of wour installation settings, click Back, Click Cancel ta
exit the wizard,

< Back ” Inskall] [Cancel

5 Click Install. A progress window displays while the installation takes place.

6 Wait until the final InstallShield Wizard Completed appears, then click Finish.

Note: Two .dll files are installed to your PC; "gtop11dotnet.dll" for 32-bit versions of
Windows and “gtop11dotnet64.dIl” for 64-bit versions.

Configuring the PKCS#11 Security Module

Security Modules are software add-ons that provide a variety of cryptographic services,
such as secure browsing, and support the use of smart cards/tokens. The IDGo 500
PKCS#11 library needs to be configured as a security module in the Mozilla

http://www.gemalto.com/products/dotnet_card/resources/libraries.html?toggler=0

21 IDGo 500 PKCS#11 Library for Windows User Guide

applications Firefox (browser) and Thunderbird (e-mail), so that they can communicate
with the IDPrime .NET smart card. For details on how to do this, see “Appendix
C - Configuring PKCS#11 in Mozilla™.

Uninstalling the IDGo 500 PKCS#11 Library

You must have administrator rights to the computer on which you are installing the
library.

To remove the IDGo 500 PKCS#11 Library in Windows XP and Server 2003:

1
2
3

Open the Control Panel (Start > Settings > Control Panel).
Double-click Add or Remove Programs.

Locate IDGo 500 PKCS#11 Library for IDPrime .NET Smart Cards. (To remove
versions that precede the renaming to IDGo 500, locate Gemalto .NET PKCS#11).

Click Remove. A message box displays asking “Are you sure you want to remove
IDGo 500 PKCS#11 Library for IDPrime .NET Smart Cards from your computer.

Click Yes to confirm the removal. A progress bar appears during the removal.

At the end of the removal, the progress bar closes, removal is complete and the
IDGo 500 PKCS#11 library is removed from your computer.

To remove the IDGo 500 PKCS#11 Library in Windows Vista, 7, Server 2008 &

Server 2008 R2:

1 Open the Control Panel (Start > Control Panel).

2 Double-click Programs and Features (if you are using the Control Panel view
under Vista/Server 2008 or the Category view under 7/Server 2008 R2, then under
Programs, click Uninstall a program instead).

3 Select IDGo 500 PKCS#11 Library for IDPrime .NET Smart Cards, (to remove
versions that precede the renaming to IDGo 500, select Gemalto .NET PKCS#11)
and click Uninstall (the Uninstall button appears when you select IDGo 500
PKCS#11 Library for IDPrime .NET Smart Cards).

4 A message box displays asking “Are you sure you want to uninstall IDGo 500
PKCS#11 Library for IDPrime .NET Smart Cards?”.

Click Yes to confirm the removal.
If User Account Control is activated, the warning “An unidentified program wants
access to your computer” appears. Choose Allow.

7 Again, if User Account Control is activated, it is possible that a message may
appear to tell you to close certain applications. If so, choose the Automatically
close applications option and click OK.

8 A progress bar appears during the removal.

At the end of the removal, the progress bar closes, removal is complete and the
IDGo 500 PKCS#11 library is removed from your computer.

Tasks

This chapter discusses information related to specific tasks that you will most often be
required to carry out when using the IDGo 500 PKCS#11 Library and where to find the
information about them.

These tasks are:

= “How to Get a Certificate” on this page.

= “How to Import a Certificate in the IDPrime .NET Card” on page 23

= “How to Delete a Certificate from the IDPrime .NET Card” on page 27

= “How to View the Details of a Certificate in an IDPrime .NET Card” on page 28
= “How to Unblock a User PIN” on page 29

= “How to Change a User PIN” on page 30

= “How to Use E-mail Securely” on page 33

= “How to View Secure Web Sites” on page 37

How to Get a Certificate

A digital certificate contains information about the user and the user’s public key, and is
used to authenticate the user’s identity during secure transactions. The certificate
identifying the user must be registered with a certificate authority and this information
must be available to both parties. To use smart cards/tokens and certificates together,
the user must generate a key pair on his card/token and then get a digital certificate
corresponding to the public key and store it on the card/token.

You can get a digital certificate from a Certificate Authority (CA). CA’s are trusted
organizations that issue and manage digital certificates, such as Verisign.

Tips

When you request a certificate, you will be asked to enter information about yourself
such as your name, e-mail address, and the type of certificate you want. The type of
information required depends upon what organization is issuing the certificate, and
may include the following:

= Key length value. The range of values is 1024-2048 in steps of 128 bits.

= Cryptographic Module (sometimes referred to as security device). You will need
this if requesting a certificate using Mozilla Firefox.

You must make sure that you specify the name corresponding to the label of your
your IDPrime .NET smart card, for example, CF.NET P11. If you give a different

23 IDGo 500 PKCS#11 Library for Windows User Guide

name, your certificate will be stored on your hard drive instead of your smart card/
token.

How to Import a Certificate in the IDPrime .NET Card

You can either use Firefox to import a certificate in the IDPrime .NET card or one of
Gemalto’s tools such as the Minidriver Manager tool, the .NET Utilities tool, DAS or
VSEC:CMS or any other Card Management System compatible with .NET cards.

Note: Please refer to “Appendix D - The Minidriver Manager Tool” before using the
Minidriver Manager. Please refer to “Appendix E - The .NET Utilities Tool” for
information on how to access the .NET Utilities tool.

For more information about DAS go to:

http://www.gemalto.com/products/das/

For more information about VSEC:CMS go to:
http://www.gemalto.com/products/versatile/

To import certificates in IDPrime .NET cards using the Minidriver Manager:
1 Start the Minidriver Manager and insert the IDPrime .NET card in the reader.
2 Click Connect.

3 Inthe Select Smart Card dialog, select the correct reader and click OK.

4 In the left panel, select a container, right-click and choose Load Container.

To import certificates in IDPrime .NET cards using the .NET Ultilities tool:

1 Access the .NET Utilities tool and insert the IDPrime .NET card in the reader as
described in “Appendix E - The .NET Utilities Tool”.

2 Inthe .NET Utilities Portal, click Manage Certificates in the left panel. The right
panel displays the certificates currently present in the card, as shown:

Figure 5 - .NET Utilities Portal — Manage Certificates

S~

' .NET Utilities

AN

NET Utilities =] 2]
Change PIN
Unbleck PIN
I Active device : Gemplus USB Smart Card Reader 0
Q IBV\BW Deteis | BDalete
lssued To Issued By Expiration Date
David SUTTON Gemalto Private CA Jun 15, 2011 =
David SUTTON Gemalte Public CA Jun 15,2011
David SUTTON Gemalte Public CA Jun 18, 2011
David SUTTON Gemalto Private CA May 15, 2013
David SUTTON Gematte Public CA May 15, 2012
David SUTTON Gematte Public CA May 15, 2013
=

3 Click Import Certificate. The Import Certificate dialog appears:

http://www.gemalto.com/products/das/
http://www.gemalto.com/products/versatile/

Tasks 24

Figure 6 - .NET Utilities Portal — Import Certificate
b

.NET Utilities

Certificate Management L]

ET Utilities = L)

Change FIN
Unblock PIN
Active device : Gemplus USB Smart Card Reader 0

Device Information

lanage Certificates

P

Iss te
Davl Please select the certificate you want to import.

Dav|

Da
David SUTTON Gemalto Public CA May 15, 2013
=

4 Browse to the certificate file on your computer and click Next. Certificate files must
be .pfx or .p12. You are prompted to enter the password for the certificate as
follows:

Figure 7 - NET Utilities Portal — Import Certificate — Password Prompt

Import Certificate

Please enter your certificate file password.

File Password: essssss

5 Enter the password and click Next. You are prompted to enter the PIN for the
IDPrime .NET smart card as follows.

Figure 8 - NET Utilities Portal — Import Certificate — Password Prompt

Import Certificate

Please enter your device PIN.

Device PIH: |
Import Certificate

6 Enter the PIN and click Import Certificate.

To import certificates in IDPrime .NET cards using Mozilla Firefox:

1 Make sure your card/token is connected.

2 Open the Mozilla Firefox browser and from the Tools menu choose Options.
3 Click the Advanced icon, then the Encryption tab as shown in “Figure 9”.

25 IDGo 500 PKCS#11 Library for Windows User Guide

Figure 9 - Mozilla Firefox Encryption Options Dialog

W O @ B @& & | &

Mair Tabs Content Feeds Privacy Security Advanced
General | Network | Update | Encryption |

Protocols
MiUse S5 3.0 Use TLS 1.0
Certificates

When a web site requires a certificate:
® Select one automatically © Ask me every time

View Certiﬂcateg] IR_evocation List's] [Werification] [5ecurity Devices

[oK H Cancel H Help I

4 Click View Certificates. You will be prompted for a password as shown in “Figure
10"

Figure 10 - Password Required

Password Required E\

e Please enter the master password for the CF.NET P11,

[QK ‘ l Carcel

5 Enter the User PIN for your card/token

The Certificate Manager window appears as shown in “Figure 11”.

Figure 11 - Certificate Manager Window

Tasks 26

Y Certificate Manager

Your Certificates | People| Servers| Authorities| Others
You have certificates from these organizations that identify vou:
Certificate Name Secyrity Device Serfal Nurmber Expires On izl
=CA for ILM
Jean-Claude DIWAL CFMNET P11 61:24;08:2C:00,00:0... 21/10/2009
Jean-Claude DINWAL - CFNET P11 61:24:07:F0:00:00:0... 21/10/2010
Jean-Claude DUWVAL CFINET P11 61:23:F6:F8:00:00:0... 21/10/2009
ECA2003
Jean-Claude DIVAL - CFNET P11 1B:55:30:59:00:00:0.,, 07/03/2009
ERoot CA
CAcert WoT User CFIMNET P11 05:93:2F 01/02/2009
Backup All...] [Import...

The certificates that are currently stored on the card/token appear under Your

Certificates.

“Figure 12”.

Figure 12 - File Name to Restore Window

File Name to Restore

Click Import. This opens a window called File Name to Restore as shown in

Look jn: |) Catiicates(P12]

T E2BobSignOnly px
{0 'AD EABOBSMmartUser pfx

My Recent
Documents

Desklop

b

My Documents

oy

File nare: |NBASmartUSer.pfx A |

[Open]

My Computer g of bype: | PKCS12 Files v

[Cancel]

7 Nauvigate to the file containing the PKCS#12 certificate (these files end in a .pfx

suffix) and click Open.
The Choose Token Dialog window opens.

27 IDGo 500 PKCS#11 Library for Windows User Guide

Figure 13 - Choose Token Dialog Window

Choose Token Dialog

Please choose a token,

I 0K H Carcel]

8 Select your IDPrime .NET card/token from the list and click OK.
9 Enter the password for the IDPrime .NET card/token if prompted.

10 If the certificate is encrypted, you will also be prompted to enter the password that
was used with the encryption.

An “Alert” indicates that the certificate and its private keys have been imported.
Click OK to close the Alert. The imported certificate appears in the Certificate
Manager as shown in “Figure 14”.

Figure 14 - Certificate Manager After Certificate Importation

© Certificate Manager

Your Certificates | People | Servers| Autharities| Others

You have certificates from these organizations that identify vou:

Certificate Name Security Device Serial Murnber Expires COn izl
=ECA for ILM
Jean-Claude DIWVAL CFINET P11 61:24:08, 2C:00:00:0.., 21/10/2009
Jean-Claude DILWVAL CFINET P11 61;24;07:F0;00:00:0... 21/10/2010
Jean-Claude DLVAL CFINET P11 61:23:F6:F8:00:00:0... 21/10,/2009
ECAZ003

Jear-Claude DUWAL CFMNET P11

... 07/03/2009

MNicolas BATAILLE CENET P11 1. 1240
B Root CA
CAcert WoT User CFIMNET P11 05:93:2F 01/02/2009
Wiew...] [Backup...] [Baclgup All..] [Import...] [Celete...

11 Click OK to close the Certificate Manager.

How to Delete a Certificate from the IDPrime .NET
Card

You can either use Firefox to delete a certificate from the IDPrime .NET card or one of
Gemalto’s tools, such as the Minidriver Manager or .NET Ultilities tool.

Note: Please refer to “Appendix D - The Minidriver Manager Tool” before using the
Minidriver Manager. Please refer to “Appendix E - The .NET Utilities Tool” for
information on how to access the .NET Utilities tool.

Tasks 28

To delete certificates in IDPrime .NET cards using the Minidriver Manager:

1 Start the Minidriver Manager and insert the IDPrime .NET card in the reader.
2 Click Connect.

3 Inthe Select Smart Card dialog, select the correct reader and click OK.

4 In the left panel, select a container, right-click and choose Delete Container.

To delete certificates in IDPrime .NET cards using the .NET Utilities tool:

1 Access the .NET Utilities tool and insert the IDPrime .NET card in the reader as
described in “Appendix E - The .NET Utilities Tool”.

2 Inthe .NET Utilities Portal, click Manage Certificates in the left panel. The right
panel displays the certificates currently present in the card as shown in “Figure 5 -
.NET Utilities Portal — Manage Certificates” on page 23

3 Select the certificate you want to delete in the list and click Delete.

To delete certificates in IDPrime .NET cards using Mozilla Firefox:

1 Follow steps 1 to 5 in “How to Import a Certificate in the IDPrime .NET Card” on
page 23.

2 In the Certificate Manager, select the certificate that you want to delete and click
Delete.

3 You will be asked to confirm the deletion, click OK. The certificate is removed from
the IDPrime .NET card and no longer appears in the Certificate Manager.

How to View the Details of a Certificate in an IDPrime
.NET Card

You can either use Firefox to view a certificate in a IDPrime .NET card or one of
Gemalto’s tools, such as the Minidriver Manager or .NET Utilities tool

Note: Please refer to “Appendix D - The Minidriver Manager Tool” before using the
Minidriver Manager. Please refer to “Appendix E - The .NET Utilities Tool” for
information on how to access the .NET Utilities tool.

To view a certificate in a IDPrime .NET card using the Minidriver Manager:
1 Start the Minidriver Manager and insert the IDPrime .NET card in the reader.
2 Click Connect.

3 Inthe Select Smart Card dialog, select the correct reader and click OK.

4

In the left panel, select a container. Its contents display in the right panel.

To view a certificate in IDPrime .NET cards using the .NET Ultilities tool:

1 Access the .NET Utilities tool and insert the IDPrime .NET card in the reader as
described in “Appendix E - The .NET Utilities Tool”.

2 Inthe .NET Utilities Portal, click Manage Certificates in the left panel. The right
panel displays the certificates currently present in the card as shown in “Figure 5 -
.NET Utilities Portal — Manage Certificates” on page 23.

3 Double click the certificate that you want to view. A Certificate Viewer window
opens, displaying details about the certificate.

29 IDGo 500 PKCS#11 Library for Windows User Guide

To view a certificate in a IDPrime .NET card using Mozilla Firefox:

1 Follow steps 1 to 5 in “How to Import a Certificate in the IDPrime .NET Card” on
page 23.

2 In the Certificate Manager, select the certificate that you want to view and click
View. The certificate’s details appear as shown in “Figure 15”.

Figure 15 - Certificate Details

Certificate Viewer:"CF.NET P11:9053a48a6fff59c3fd96554883... S|

General| Details

Could not verify this certificate because it has expired.

Issued To

Common MName (Ch) MNicolas BATAILLE

Crganization (O) <ot Part Of Certificate>

Organizational Unit (OU) Auto_Enrol

Serial MNumber 1F:94:68:F5:00:00:00:00:0E:04

Issued By

Common Name (CN) CA2003

Organization (O) CAZ003

Organizational Linit (OU) <MNot Part Of Certificate>

Validity

Issued On 12/01/2007

Expires On 12/01/2008

Fingerprints

SHAI Fingerprint 00:FA:DC 4D:B9:58:DEB3:47. 7B 2R C1iE2:04:C3: A8 39:45: 7899
MDS Fingerprint 45:9A:F1:83:96,80: 3E:C6:87:87, 73:40:CB.DF:85.DB

Close

3 Click Close to close the window.

How to Unblock a User PIN

There are several ways to do this:

= Use Gemalto’s Minidriver Manager tool.

Note: Please refer to “Appendix D - The Minidriver Manager Tool” before using the
Minidriver Manager.

= Use Gemalto’s .NET Utilities tool.

Note: Please refer to “Appendix E - The .NET Ultilities Tool” for information on how to
access the .NET Ultilities tool.

= Use the Security officer (SO) PIN (sometimes known as the Administrator PIN or
the unblock PIN). For information on how to use this PIN and some sample code
enabling you to do so, refer to “The Security Officer PIN” on page 14.

= Use a card management system (CMS) such as Gemalto’s DAS or VSEC:CMS or
a third party CMS.

Tasks 30

To unblock a User PIN in IDPrime .NET cards using the Minidriver Manager:
1 Start the Minidriver Manager and insert the IDPrime .NET card in the reader.
2 Click Connect.

3 Inthe Select Smart Card dialog, select the correct reader and click OK.

4 Click Unblock PIN.

To unblock a User PIN in IDPrime .NET cards using the .NET Utilities tool:

1 Access the .NET Utilities tool and insert the IDPrime .NET card in the reader as
described in “Appendix E - The .NET Utilities Tool”.

2 Inthe .NET Utilities Portal, click Unblock PIN in the left panel. The right panel
displays some information about the card.

3 Enter the new value for the PIN in New PIN and Confirm New PIN and click
Unblock.

Note: The Reset button clears the New PIN and Confirm New PIN fields. The New
Challenge button generates a new challenge, which may be used to remotely unblock
the PIN. You can ignore this feature.

How to Change a User PIN

You can change a User PIN in a IDPrime .NET card in one of the following ways:
= Use Gemalto’s Minidriver Manager tool.

Note: Please refer to “Appendix D - The Minidriver Manager Tool” before using the
Minidriver Manager. Please refer to “Appendix E - The .NET Utilities Tool” for
information on how to access the .NET Utilities tool.

m Use Gemalto’s .NET Utilities tool.

Note: Please refer to “Appendix E - The .NET Utilities Tool” for information on how to
access the .NET Utilities tool.

= Use a card management system (CMS) such as Gemalto’s DAS or VSEC:CMS or
a third party CMS.

= Use Mozilla Firefox, as described in the following section:

To change a User PIN in IDPrime .NET cards using the Minidriver Manager:
1 Start the Minidriver Manager and insert the IDPrime .NET card in the reader.
2 Click Connect.

3 Inthe Select Smart Card dialog, select the correct reader and click OK.

4 Click Change PIN.

To change a User PIN in IDPrime .NET cards using the .NET Ultilities tool:

1 Access the .NET Utilities tool and insert the IDPrime .NET card in the reader as
described in “Appendix E - The .NET Utilities Tool”.

In the .NET Ultilities Portal, click Change PIN in the left panel.

In the right panel, enter the current value of the PIN and Current PIN and the new
value for the PIN in New PIN and Confirm New PIN.

Click Change PIN.

w N

F N

31 IDGo 500 PKCS#11 Library for Windows User Guide

To change a User PIN in a IDPrime .NET card using Mozilla Firefox:

1 Make sure your card/token is connected.

2 Open the Mozilla Firefox browser and from the Tools menu choose Options.
3 Click the Advanced icon, then the Encryption tab as shown in “Figure 16”.

Figure 16 - Mozilla Firefox Encryption Options Dialog

'Options E|

i O @ B e & i

Main Tabs Content Feeds Privacy Securlty Advanced

General | Network | Update | Encryption |

Protocols
lUse TLS 1.0

Certificates
When a web site requires a certificate:
@ Select one automatically © Ask me every time

Wiew Certificateg] ’P_\evocation Lists] ’ Werification] ISecuritg Devices I

[K H Cancel H Help]

4 Click Security Devices to display the Device Manager window. This displays the
modules currently available as shown in “Figure 17”.

Tasks 32

Figure 17 - Device Manager

Y Device Manager g@

Security Modules and Devices Dretails Walue
= MSS Internal PKCS #11 Module Status Logged In
Generic Crypho Services Drescription Gemplus USB Smart Ca...
Software Security Device Manufachurer Unknown
B Gemalto PKCS#11 Module HW Version 00
Gemplus USB Smart Card Reader O FW Wersion 0.0
B Gemalto PKCS#11 Module for NET Label CFINET P11
- CFINET P11 - | Manufacturer Gemalto
B Builtin Roots Module Serial Mumber 43203A4A065E606E
Builtin Cbiject Token HW Wersion 20

FW Version 20

oK

5 In Device Manager, select the card whose PIN you want to change, as shown in
“Figure 17”.

6 Click Change Password. The window shown in “Figure 18” appears.

Figure 18 - Change Master Password Window

Security Device, CENET P11

Current password: ‘ ‘

MNew password: ‘ ‘

MNew password (again): ‘ ‘

Password gquality meter

[]

I Ok H Cancel]

In Current Password, enter the current PIN value.

In New Password and New Password (again), enter the new PIN value for the
smart card.

9 Click OK.

33 IDGo 500 PKCS#11 Library for Windows User Guide

How to Use E-mail Securely

The following sections explain how to send secure e-mail using the IDGo 500
PKCS#11 Library.

About Secure E-mail

With the IDGo 500 PKCS#11 Library, you can improve e-mail security by using the
digital certificate on your smart card/token to:

Sign your e-mail so that the recipient can verify that the message is really from you
and has not been altered.

Encrypt, or “scramble” a message so that only the intended recipient can read it.
This eliminates concerns about intercepted messages and e-mail monitoring.

Sign or encrypt your message using one e-mail program, while your intended
recipient can read it with any other S/MIME-enabled e-mail program.

Receive signed and encrypted e-mail messages.

Setting up Secure E-mail

Depending on your e-mail application you will have to do some or all of the following
before you can send secure e-mail:

Configure the application to recognize the PKCS#11 security module
Configure security settings

Set the security settings for digitally signing and/or encrypting the contents and
attachments of outgoing messages.

Specify certificates to be used for signing and encryption

Choose the digital certificate(s) that you will use to encrypt and digitally sign your e-
mails. You can use the same certificate for both operations or two different ones.
These certificates are associated with your e-mail account.

Send yourself a digitally-signed e-mail

When you send a signed e-mail, you sign it with the private key. The recipient
receives the corresponding public key with the mail which he or she uses to
decipher your mail.

Before you can send e-mails to anybody else, you need to send a signed message
to yourself in order for Thunderbird to store your public key.

Then you can send your public key to other people, for example by sending them a
signed message. Once they have your public key, they can use it to encrypt mails
they send to you (which you decipher using your private key).

The following sections describe how to perform the above operations using Mozilla
Thunderbird. The dialog boxes shown may differ slightly from your own software,
depending on what version you are using.

Working with Mozilla Thunderbird.

The following sections explain how to set up and send secure e-mail with Mozilla’s
Thunderbird e-mail program. There are three stages:

1

Configure Thunderbird to recognize the Security Module, described in “Appendix
C - Configuring PKCS#11 in Mozilla”.

Configure the security settings and specify the certificates to use for signing and
encryption, described in the following section.

Tasks 34

3 Send a digitally signed e-mail to yourself so that Thunderbird recognizes your
public key, described on page 36.

Configuring Settings and Specifying Certificates

You only need to do this the first time you use your card/token to sign or encrypt an e-
mail.

Note: Although selecting the certificates is mandatory, this does not mean that you
must sign and encrypt e-mails.

Make sure your smart card/token is connected.
Start Mozilla Thunderbird.
Enter your password if you are prompted for it.

From the Tools menu, choose Account Settings.

a H WO N =

Select Security as shown in “Figure 19”.

Figure 19 - Thunderbird — Security Account Settings

X

Account Settings

= David.Sutton@gemalto.com
Server Setfings
Copies & Folders Ta lsendl anld receive signed or encrypteq rmessages, you should specify both a
Composition & Addressing digital signing certificate and an encryption certificate,
[isc Space Digital Signing
Jurk Seftings Use this certificate to digitally sign messages vou send:
Fetrn Receipts | [Select
L Security
= ocal Folders
Disc Space
Jurk Settings Encryption
Outgoing Server (SMTP) Use this certificate to encrypt & decrypt messages sent to vou:
| | ’ Select...
Default encryption setting when sending messages:
Certificates
Wiew Certificates] Igecurity Devices l
[Add Account,.]
[Remowe Account]
[0K } I Cancel

6 In Digital Signing, click Select. The window shown in “Figure 20” appears.

35 IDGo 500 PKCS#11 Library for Windows User Guide

Figure 20 - Thunderbird - Select Certificate

'Select Certificate @

Certificate: Sl

Details of selected certificate:

[ssued to: E=jeduval @gemsafe gem, CN=Jean-Claude DUVAL,CN=Users DC=clms,DC=gemsafe DC=gem
Serlal Number: 61:24:08:2C:00:00:00:00:01:58
Walid from 21/10/2008 16:53:44 t0 21/10/2009 16:53:44

[ssued by: CN=CA for ILM,DC=cIms,DC =gemsafe, BC=gem

Stored In: CENET P11

7 Select the certificate you want to use from the list that appears (its details appear in
the window).

Note: You may be prompted to enter a “master password”. If so, enter the PIN for the
card and click OK.

8 Click OK. The following message appears:

Figure 21 - Thunderbird — “Use Same Certificate” Message

vThunderbird

(?) You should also specify a certificate for other people to use when they send you encrypted
messages. Do you want to use the same certificate to encrypt & decrypt messages sent to you?

9 If you want to use the same certificate to encrypt and decrypt messages, click OK.
This selects the certificate for you in the Encryption panel as shown in “Figure 22”.

Otherwise click Cancel.

Tasks 36

Figure 22 - Thunderbird — Security Account Settings (2)

Account Settings E\
Server Settings
Copies & Folders To lsend arwld receive signed or encrypted messages, you should specify both a
Composition & Addressing digital signing certificate and an encryption certificate,
Disc Space Digital Signing
Jurk Settings |Use this certificate to digitally sign messages you send:
el Beccit CFINET P11:1kers Jear-Claude DUVAL [(Select. | [Cler
Security =
=lacal Folders [Digitally sign messages (by default)
Disc Space
Jurk Settings Ercryption
QOutgoing Server (SMTP) Ise this certificate to encrypt & decrypt messages sent to you:
|CFNET P11:Users Jean-Claude DUVAL |[select.. J[Clea |
Default encryption setting when sending messages:
@ Mewver (do not use encryption)
O Required {can't send message unless all recipients have certificates)
Certificates
[yiew Certificates I [gecurity Devices]
l Add Account..,]
I Remove Account]
l K I [Cancel I

10 If you want all of your e-mails to be digitally signed by default, check the box
Digitally sign messages (by default).

11 In Encryption, if you chose not to use the same certificate as the one used for
digital signing, click Select and choose the certificate from the list that appears. A
message similar to the one in “Figure 21” appears, but this time asking if you want
to use the Encryption certificate for digital signing. This is just in case you select
your encryption certificate before you select your digital signature certificate.

12 In Default encryption setting when sending messages, choose one of the
option buttons Never or Required.

13 Click OK to close the Security Account Settings window.

Note: If you want to modify the account settings at any point, open the Account
Settings window from the Tools menu by choosing Account Settings. This can be
done either from the Compose window or directly in Thunderbird.

Sending Digitally Signed E-mail with Mozilla Thunderbird

When you send a signed e-mail, you sign it with the private key. The recipient receives
the corresponding public key with the mail which he or she uses to decipher your mail.

Before you can send e-mails to anybody else, you need to send a signed message to
yourself in order for Thunderbird to store your public key.

Then you can send your public key to other people, for example by sending them a
signed message. Once they have your public key, they can use it to encrypt mails they
send to you (which you decipher using your private key).

37

IDGo 500 PKCS#11 Library for Windows User Guide

To send a digitally signed e-mail with Mozilla Thunderbird:
1 Click the Write icon to open the Compose window.

2 In the Compose window, click the Security icon and choose Digitally Sign This
Message.

3 Complete the Compose window and click Send. You may be prompted to enter
the “master password” for your security module, which is the User PIN for the smart
card/token.

Note: If you need further help in using Thunderbird, consult Thunderbird’s online help
(Help > Mozilla Thunderbird Help).

Sending Encrypted E-mail with Mozilla Thunderbird

Once you have configured your e-mail account in Mozilla Thunderbird, you can
retrieve a person’s public key when he or she sends a signed message to you. When
you send e-mail to that person, you use his or her public key to encrypt the e-mail. This
is done automatically by Thunderbird; you just need to specify the recipient(s) of the
mail. Since no one except the person who has the private key can decrypt it, the e-mail
is secure.

To send an encrypted e-mail with Mozilla Thunderbird:
1 Click the Write icon to open the Compose window.

2 In the Compose window, click the Security icon and choose Encrypt This
Message.

3 Complete the Compose window and click Send. You may be prompted to enter
the “master password” for your security module, which is the User PIN for the smart
card/token.

How to View Secure Web Sites

Communicating and conducting business on the Web is quickly becoming the most
convenient, effective means of transaction. Therefore, Web sites must be secure to
protect the corporation, the individual and the information exchanged.

With your IDPrime .NET smart card/token, you can browse secure Web sites knowing
that your private key and digital certificate are safely stored on your smart card/token
instead of your hard drive, where they might be susceptible to unauthorized access.

Note: All secure Web site addresses must begin with https://. Browsers display a lock
icon at the bottom of the browser window indicating that the site is secure. A closed
lock indicates that you are operating in secure mode. You may need to configure your
organization’s network to allow secure browsing.

When you connect to a secure Web site, your certificate must be registered in your
browser so that you can authenticate yourself to the Web server. For example, when
you bank online, your bank must be sure that you are the correct person to get account
information. Your certificate confirms your identity to the online bank.

The following sections explain how to check that your certificates are correctly
registered in your browsers when authenticating with secure web sites using Firefox as
an example.

Tasks 38

Mozilla Firefox

To authenticate yourself using the Mozilla Firefox browser, your certificate must be
registered in Firefox. This section describes how to tell Firefox whether it should select
the certificate itself, or ask you and also how to check that a certificate is registered.

To tell Firefox how to select a certificate:

1 Follow the procedure for Firefox described in “Appendix C - Configuring PKCS#11
in Mozilla”.

2 In step 4 of that procedure, choose whether you want Firefox to select a certificate
for you or whether to ask you each time.

To check certificates are registered in Mozilla Firefox:

1 Follow the procedure for Firefox described in “How to Import a Certificate in the
IDPrime .NET Card” on page 23 until you open the Certificate Manager as shown
in “Figure 11” on page 26.

2 Make sure that all the certificates that you want to use to authenticate to secure
web sites in Firefox appear under Your Certificates.

Example of Using the IDPrime .NET Card to Authenticate to a Web
Site

The following procedure provides an example of logging on to a page in the cacert.org
web site, a site where you can obtain authorized certificates, that is secured.
To authenticate to a secured web page using Firefox:

1 Make sure the IDPrime .NET smart card is connected and go to the web site in
Firefox, as shown in “Figure 23”.

39

IDGo 500 PKCS#11 Library for Windows User Guide

Figure 23 - Example Web Site Before Authentication

Y Welcome to CAcert.org - Mozilla Firefox

Eile Edit Wiew History Bookmarks Tools Help
@ - C (| CA hitp: /fwww cacert.orgf N -] G- .
2] Most Visited B Getting Started & Latest Headlines
~
a.
CAcert
Are you new to CAcert? Join CAcert.org
Jain
If you weant to have free cerificates issued to you, join the CAcert Community . Community Agreement
Root Certificate
If you want to use certificates issued by CAcent, read the CAcert Disclaimer and Licence .This license applies to using the
Chcert root keys My Account
Password Login
Lost Password
Net Cafe Login
ELLERL Certificate Login
invited talk at LISA2008 * About CAgertiorg
As mentioned by Maurice, | presented this at LIZA2005:An Open Audit of an Open Cedification AuthorityHow does a A
lightweight community Certification Authority ("CA" engage in the heavyweight world of PKI and secure browsing? This + Translations
talk tracks the systems audit of CAcert, .
Advertising
[Full Stary | i Branchenbuch
: Werbeartikel
CAcert-Parties in Dlsseldorf | AOEoREEEhCG
{werbemittel
Gleich zwei CAcert-Parties gibt es diese Woche in DisseldorfNRYW:Der Chans Camputer Club Disseldorf Photovoltaik
(e chaosdorf de) bietet am 28.11. ab ca. 20:00 eine Zedifizierungsmaglichkeit an. Hier konnen sich Interessenten auch | Zahnersatz
tber die Hintergrinde zum Thema CAcert und PGP-Verschliisselung informieren. Einlass ist ab ca. 19:00.> Chaos j Linktausch
Computer Club Duesseldorf> i Suchmaschinenoptimierur
[Full Story]
CAcertis present at the LISA 2008 in San Diego, California.
The LISA, Large Installation System Administrators conference, will be interesting in particular on thursday between
11:00AM and 12:30FM as the CAcert auditor, lan Grigg, will do his “lrwited talk” about auditing a community driven
Certificate Authority on this conference.lan will talk about how CAcer as a8 lightweight community Cerificate Authority ..
[Full Stary |
[Mare Mewes ltems |
For CAcert Community Members v
< >
Diare

2 Click the link to the secured page, in this example Certificate Login under My
Account on the right of the page.

3 If prompted for the master password, enter the PIN of the IDPrime .NET smart
card.

4 If Firefox is configured to Ask Me Each Time (see step 4 in “Appendix
C - Configuring PKCS#11 in Mozilla” for “Firefox” on page 79), you are asked to
select a certificate to authenticate yourself as shown in “Figure 24”.

Figure 24 - User Identification Request Window

Tasks

User Identification Request

B

This site has requested that you identify yourself with a certificate:
www,cacert.org (:443)

Organization: "CAcert Inc."

Issued Under: "Root CA"

Choose a certificate to present as identification:

CF.MET P1L:CAcert WoT User's Root CAID [05:BC:04]

Details of selected certificate:

Issued to: E=twalid@voila.fr, CN=CAcert WoT User
Serial Mumber: 05:BC:04
Valid from 9/9/2008 15:45:35 PM to 3/8/2009 14:45:35 PM
Purposes: Client, Server,Sign,Encrypt
Email: t.valid@voila.fr
Issued by: E=support@cacert.org, CN=CA Cert Signing
Authority, QU=http://www.cacert.org, O=Root CA
Stored in: CR.MET P11

[ok

| | cancel |

40

5 Select the certificate and click OK. You are given access to the secured web page

as shown in “Figure 25”.

Figure 25 - Secured Web Page After Authentication

‘ s o5

File Edit View History Bookmarks Tools Help

]

2

@ T C [EA_‘https:n’secura‘cacert‘org/account‘php

2 Most Visited P Getting Started 5| Latest Headlines

CAcert

Welcome to your account section of the website. Below is a description of the different sections and what they're for.

CAcert.org

If you would like to view news items or change languages you can click the logout or go home links. Go home doesn't log you
out of the system, just retums you to the front of the website. Logout logs you out of the system.

My Details

In this section you will be able to edit your personal information (if you haven't been assured), update your pass phrase, and
lost pass phrase questions. You will also be able to set your location for the Web of Trust, it also effects the email
announcement settings which among other things can be set to notify you if you're within 200km of a planned assurance
event. You'll also be able to set additional contact information when you become fully trusted, so others can contact you to
meet up outside official events.

Email Accounts and Client Certificates

The email account section is for adding/updating/removing email accounts which can be used to issue client certificates
against. The client certificate section steps you through generating a certificate signing request for one or more emails you've
registered in the email account section.

D ins and Server Certifi

Before you can start issuing certificates for your website, irc server, smtp server, pop3, imap etc you will need to add
domains to your account under the domain menu. You can also remove domains from here as well. Once you've added a
domain you are free then to go into the Server Certificate section and start pasting CSR into the website and have the website
return you a valid certificate for up to 2 years if you have 50 trust points, or 6 months for no trust points.

Org Client and Server Certificates
Once you have verified your company you will see these menu options. They allow you to issue as many certificates as you

like without proving individual email accounts as you like, further more you are able to get your company details on the
certificate.

CAcert Web of Trust

The Web of Trust system CAcert uses is similar to that many involved with GPG/PGP use, they hold face to face meetings to
verify each others photo identities match their GPG/PGP key information. CAcert differs however in that we have modified
things to work within the PKI framework, for you to gain trust in the system you must first locate someone already trusted.

CAcert.org
Go Home
Logout

+ My Details

+ Email Accounts

+ Client Certificates
+ Domains

+ Server Certificates
+ CAcert Web of Trust
+ CAP/TTP Forms

+ Disputes/Abuses

m

Done

secure.cacert.org (L

41 IDGo 500 PKCS#11 Library for Windows User Guide

Notice that the URL at the top of the page begins with https, and a padlock icon
appears at the bottom right of the page - both indicating that the page is secured.

Sample Code

Cryptoki Header Files

In addition to the sample code provided in this appendix, you will need all of the
following Cryptoki header files:

= pkes11.h
= pkcs1if.h
= pkcs1ith

These can be downloaded from http://www.rsa.com/rsalabs/node.asp?id=2133.

Sample Code Files

This appendix lists several source code files presenting how to use the most common
PKCS#11 methods of the library.

The file “main.c” is a generic program executing the linked “SampleFunction” code. To
build the program you have to compile the “main.c” file with one of the other files
described in this appendix.

main.c

This sample code load the cryptoki and execute the SampleFunction linked with it.

#include <stdio.h>
#include <string.h>

#ifdef WIN32

#include <windows.h>
#include <conio.h>
#ifndef WINDOWS
#define WINDOWS
#endif

#define LIBRARY NAME "gtoplldotnet"

#define LIBRARY EXT ".dll"

#define DLOPEN (1ib) LoadLibrary(lib)

#define DLSYM(h, function) GetProcAddress (h, function)
#define DLCLOSE (h) FreeLibrary (h)

felse
#include <stdlib.h>
#include <unistd.h>

http://www.rsa.com/rsalabs/node.asp?id=2133

43

IDGo 500 PKCS#11 Library for Windows User Guide

#include <dlfcn.h>

#define LIBRARY NAME "/usr/lib/pkcsll/libgtoplldotnet™
#ifdef APPLE

#define LIBRARY EXT ".dylib"

#else

#define LIBRARY EXT ".so"

#endif

#define DLOPEN (lib) dlopen(lib, RTLD_ NOW)

#define DLSYM(h, function) dlsym(h, function)

#define DLCLOSE (h) dlclose (h)

#endif

#include "pkcsll.h"
#define CKRLOG(fct, rv) printf("\n%s:%d " fct " () exited with Cryptoki error
0x%081X: \n", FILE , LINE , rv)

static CK_SLOT ID slotID = 0;

static char szDLLName[128] = LIBRARY NAME LIBRARY EXT;
static CK CHAR szPinCode[49] = "0000";/* default PIN code */
#ifndef NO SESSION

static CK _SESSION HANDLE hSession;

#endif

static CK RV rv = CKR OK;

static CK_FUNCTION LIST PTR p = NULL;

void SampleFunction (void);

/***

* void usage (void)
*
* Description : Prints out program information and then terminates the

* application.
***/

void usage (void) ;
void usage (void)
{
printf (" (c)2008 Gemalto Development\n\

usage: program -p:<pincode> -s:<slotid> -d:<cryptokidll> -1:\n\n\
All arguments are optional. Defaults are: \n\n\

<pincode> $s\n\

<slotid> $1d\n\

<cryptokidll> %s\n", szPinCode, slotID, szDLLName);

exit (0);

/***

* void main(int argc, char* argv[])
*
* Description : Standard initialization and termination code for all

* samples.
*

***/
int main(int argc, char *argv([])
{

CK RV (*pC GetFunctionList) (CK FUNCTION LIST PTR PTR);

Sample Code

void *hModule;

CK BBOOL IsSlotEnter = FALSE;
CK_SLOT ID PTR pSlotList;
CK_ULONG count = 0;

int a;

/*---- Analyze the command line for parameters (see usage) ----*/
for (a = 1; a < argc; at+)

{

/* Expect arguments of the form -x:<param> */
if ((strlen(argvlal) < 3) ||
(argv[al [0] != '-') || (argvlall[2] != ':"))
usage () ;
switch (argv[a]l[l])

{

case 'p':
strncpy ((char *) szPinCode, &(argv[al]l[3]), sizeof(szPinCode));
szPinCode[sizeof (szPinCode) - 1] = '"\0';
printf ("Using PIN: %$s\n", szPinCode);
break;
case 'd':
strncpy ((char *) szDLLName, &(argv[al][3]), sizeof (szDLLName)) ;
szDLLName [sizeof (szDLLName) - 1] = '\0';
printf ("Using library: %s\n", szDLLName);
break;
case 's':
if (sscanf(&(argv[a][3]), "%lu", &slotID) != 1)
usage () ;

printf ("Using slot: %$1d\n", slotID);
IsSlotEnter = TRUE;

break;
default:
usage () ;
break;
}
}
/* ---- Load dynamically DLL and retrieve function list pointer -- */

if ((hModule = DLOPEN (szDLLName)) == 0)

printf ("DLOPEN Error\n");
exit (0);

if ((PC_GetFunCtionLiSt = (CK RV (*) (CK_VOID_PTR))DLSYM(hMOdule,
"C GetFunctionList")) == NULL)

{
printf ("DLSYM Error\n");
exit (0);

/* ---- Cryptoki library standard initialization ---- */
if ((rv = pC_GetFunctionList (&p)) != CKR OK)

CKRLOG ("C_GetFunctionList", rv);
exit (0);
}
rv = (*p->C Initialize) (NULL PTR);
if (rv != CKR _OK)

44

45 IDGo 500 PKCS#11 Library for Windows User Guide

CKRLOG ("C_Initialize", rv);
exit (0);

if (!IsSlotEnter)
unsigned int 1i;

/* Get number of slots in system
rv = (*p->C GetSlotList) (FALSE, NULL, &count);
if (rv != CKR OK)
{
CKRLOG ("C_GetSlotList", rv);
goto end;

/* no slot found */
if (0 == count)
{
printf ("No slot found\n");
goto end;
}
printf ("Nb slot found: %1d\n", count);

/* no slot found */

if (0 == count)

{
printf ("No slot found\n");
goto end;

pSlotList = calloc(count, sizeof (CK_SLOT ID));

pSlotList[0] = 42;
/* Get First Slot ID, with Token if possible
rv = (*p->C GetSlotList) (FALSE, pSlotList, é&count);
if (rv != CKR _OK)
{
CKRLOG ("C_GetSlotList", rv);
free(pSlotList);
goto end;

printf ("Nb slot found: %1d (", count);
for (1=0; i<count; 1i++)

printf ("%$1d ", pSlotList[il]);
printf (")\n");

slotID = pSlotList[0];
printf ("using slot: %$1d\n", slotID);
free(pSlotList);

#ifndef NO SESSION
/* C_OpenSession */
rv = (*p->C OpenSession) (slotID, CKF SERIAL SESSION
#ifdef RW_SESSION
| CKF_RW_SESSION
#endif
, NULL_PTR, NULL_PTR, &hSession);
if (rv != CKR _OK)

*/

*/

Sample Code

CKRLOG ("C_OpenSession", rv);
goto end;

#ifndef NO LOGIN /* Some samples don't require us to log in */
/* Login only if a PIN code is presented
* Needed to get the "Free private memory:" value */
if (strlen((char *) szPinCode))
{
rv = (*p->C Login) (hSession, CKU USER, szPinCode, (CK ULONG)
strlen((const char *) szPinCode));
if (rv != CKR OK)
{
CKRLOG ("C_Login", rv);

goto end;
}
}
#endif
#endif
SampleFunction();

#ifndef NO_SESSION
/* C_CloseSession */
rv = (*p->C CloseSession) (hSession);
if (rv != CKR OK)
CKRLOG ("C_CloseSession", rv);
#endif

end:

/*---- Tidy up ----*/
(*p->C_Finalize) (NULL PTR);

if (hModule != 0)
DLCLOSE (hModule) ;

/*-——— Print out error if necessary ----*/
if (rv != CKR OK)
CKRLOG ("C Finalize", rv);

#ifdef WIN32
printf ("Press a key to exit...");
getchar();

#endif

return 0;

46

47 IDGo 500 PKCS#11 Library for Windows User Guide

getinfo.c

This sample code shows how to retrieve the token information, the slot information and
the session information. It is included in other functions such as “tellme.c” on page 75
and “slotevent.c” on page 72.

static void getinfo (void)

{
CK_INFO info;
CK CHAR szId[33], szDescription[33];

if((rv = (*p->C _GetInfo) (&info)) != CKR OK)
{

CKRLOG ("C GetInfo", rv);

return;

memcpy (szId, info.manufacturerID, 32);
szId[sizeof (szId)-1] = '\0';

memcpy (szDescription, info.libraryDescription, 32);
szDescription[sizeof (szDescription)-1] = '\0';

printf ("Library Information:\n\

> Cryptoki Version: %$d.%02d\n\

> Manufacturer Id: $s\n\

> Flags: $041xX\n\

> Library Description: %$s\n\

> Library Version: %d.%d\n\n",
info.cryptokiVersion.major, info.cryptokiVersion.minor,
szId,
info.flags,
szDescription,

info.libraryVersion.major, info.libraryVersion.minor);

static void getslotinfo(CK SLOT ID slotid)

{
CK_SLOT INFO sinfo;
CK CHAR szId[33], szSlotDescription[65];

if((rv = (*p->C _GetSlotInfo) (slotID, &sinfo)) != CKR OK)

{
CKRLOG ("C_GetSlotInfo", rv);
return;

memcpy (szId, sinfo.manufacturerID, 32);
szId[sizeof (szId)-1] = '\0';

memcpy (szSlotDescription, sinfo.slotDescription, 64);
szSlotDescription[sizeof (szSlotDescription)=-1] = '\0';

printf ("Slot Information for slot %1d:\n\

> Slot Description: %s\n\
> Manufacturer Id: %s\n\
> Flags: %$s %s %s\n\
> Hardware Version: %d.%d\n\
> Firmware Version: %$d.%d\n\n",
slotID,
szSlotDescription,

szId,

(sinfo.flags & 1)
(sinfo.flags & 2)
(sinfo.flags & 4)
sinfo.hardwareVersion.major,
sinfo.firmwareVersion.major,

(
(
(

? "CKF_TOKEN PRESENT"
? "CKF_REMOVABLE DEVICE"
? "CKF_HW_SLOT"

Sample Code

"u),
llll) ,

ll") ,

sinfo.hardwareVersion.minor,
sinfo.firmwareVersion.minor);

static void gettokeninfo (CK _SLOT ID slotid)

{

V VV V V V V V V VYV VYV VYV

CK_TOKEN INFO tinfo;

CK _CHAR szId[33], szLabel[33], szModel[17], szSerialNumber[17];

if((rv =
{
CKRLOG ("C_GetTokenInfo", rv);
return;

memcpy (szLabel, tinfo.label,
szLabel [sizeof (szLabel)-1] =

32);
I\OI;

memcpy (szId, tinfo.manufacturerlID,

(*p->C_GetTokenInfo) (slotID, &tinfo))

!= CKR_OK)

32);

szId[sizeof (szId)-1] = "\0';
memcpy (szModel, tinfo.model, 16);
szModel [sizeof (szModel)-1] = '"\0';
memcpy (szSerialNumber, tinfo.serialNumber, 16);
szSerialNumber[sizeof (szSerialNumber)-1] = '"\0';
printf ("Token Information for slot %1d:\n\
Label: %s\n\
Manufacturer Id: %s\n\
Model: %s\n\
Serial Number: $s\n\
Flags: $5%5%5%5%5%s%s%s%s%s\n\
Max sessions: $1d\n\
Current sessions: %$1d\n\
Max R/W sessions %$1d\n\
Current R/W sessions: %1d\n\
Max Pin Len: $1d\n\
Min Pin Len: $1d\n\
Total public memory: %1d\n\
Free public memory: $1d\n\
Total private memory: %1d\n\
Free private memory: %1d\n",
slotID,
szLabel,
szId,
szModel,
szSerialNumber,
((tinfo.flags & 1) ? "CKF RNG " "y,
((tinfo.flags & 2) ? "CKF _WRITE PROTECTED " "y,
((tinfo.flags & 4) ? "CKF_LOGIN REQUIRED " : ""),
((tinfo.flags & 8) ? "CKF USER PIN INITIALIZED " : ""),
((tinfo.flags & 16) ? "CKF EXCLUSIVE EXISTS " : ""),
((tinfo.flags & 32) ? "CKF RESTORE _KEY NOT NEEDED " : ""),
((tinfo.flags & 64) ? "CKF CLOCK ON TOKEN " : ""),
((tinfo.flags & 128) 2 "CKF SUPPORTS PARALLEL " "y,
((tinfo.flags & 256) ? "CKF_PROTECTED AUTHENTICATION PATH " : ""),
((tinfo.flags & 512) ? "CKF DUAL CRYPTO OPERATIONS " : ""),

48

49 IDGo 500 PKCS#11 Library for Windows User Guide

deleteall.c

tinfo.ulMaxSessionCount,
tinfo.ulSessionCount,
tinfo.ulMaxRwSessionCount,
tinfo.ulRwSessionCount,
tinfo.ulMaxPinLen,
tinfo.ulMinPinLen,
tinfo.ulTotalPublicMemory,
tinfo.ulFreePublicMemory,
tinfo.ulTotalPrivateMemory,
tinfo.ulFreePrivateMemory) ;

#ifndef NO_SESSION
static void getsessioninfo(void)

{
CK_SESSION INFO si;

if ((rv = (*p->C GetSessionInfo) (hSession, &si)) != CKR OK)
{

CKRLOG ("C_GetSessionInfo", rv);

return;

printf ("Session Information\n\

> slotID: %$1d\n\

> state: $1d\n\

> flags: $1d\n\

> ulDeviceError: %1d\n\n",
si.slotID,
si.state,
si.flags,

si.ulDeviceError) ;

}
#endif

This sample shows how to remove all objects from the token. This can be very useful
during development to “reinitialize” the token. Note that the search for the next object to
be deleted using the C_FindObjects function has to be reinitialized each time because
the calling of the C_DestroyObiject function invalidates the previous search.

/* include the common code */
#define RW_SESSION
#include "main.c"

/******************‘k***‘k‘k‘k*‘k‘k‘k‘k*‘k*‘k*‘k‘k*‘k*‘k*‘k**********************************

* void SampleFunction(void)
*
hhkhkhkhkhkhkhkkhkhkhhkhkhhhkhkhhhkhhkhkhhhkhkhhkhkhkhhhhhhhhhkhhkhkhkhkhhkhhkhkhhkhkhkhkhhkhhkdhkhkkhkhkhhkhkhhhrhkkxkkx
*/
void SampleFunction (void)
{

CK_OBJECT HANDLE hObject;

CK ULONG found;

int 1 = 0;

/*---- Get user confirmation (this will, after all, erase the lot)----%*/
printf ("All objects in token will be deleted. OK? [y|n]: ");
if (getchar() != 'y")

return;

dumpit.c

Sample Code 50

printf ("Deleting...\n");
do
{

/*---- Search for an object ----*/
if ((rv = (*p->C FindObjectsInit) (hSession, NULL PTR, 0)) != CKR OK)
{
CKRLOG ("C_FindObjectsInit", rv);
return;

if ((rv = (*p->C FindObjects) (hSession, &hObject, 1, &found))
!= CKR OK)

CKRLOG ("C_FindObjects", rv);
return;

if ((rv = (*p->C FindObjectsFinal) (hSession)) != CKR OK)

CKRLOG ("C_FindObjectsFinal", rv);

return;
}
if (found == 1)
{
/*---- It's curtains for the object----%/
if ((rv = (*p->C DestroyObject) (hSession, hObject)) != CKR OK)

{
CKRLOG ("C_DestroyObject", rv);
return;

}

it++;

}

while (found == 1);

printf ("\n%d objects deleted.\n", i);
return;

This sample is very useful for debugging. It prints out a listing of all the objects and their
attributes in the token. It illustrates how to find objects using the C_FindObject
functions and then how to determine their attributes using C_GetAttribute. The user is
assumed to have logged in (C_Login), before using this function.

/* include the common code */
#include "main.c"
#include <ctype.h>

#ifndef WIN32
#define min(a,b) (((a)<(b))?(a): (b))
#endif

/******************‘k***‘k‘k‘k*‘k‘k‘k‘k*‘k*‘k*‘k‘k*‘k*‘k*‘k**********************************

* void SampleFunction (void)
*************************‘k****‘k***‘k****‘k***‘k****‘k***‘k‘k***‘k****‘k***‘k****‘k*****/

void SampleFunction (void)

{
/* List of possible format types for attributes */

#define FT ULONG (1)
#define FT BYTES (2)
#define FT BOOL (3)

/*---- Dull list of all possible Cryptoki attributes ----*/

51

IDGo 500 PKCS#11 Library for Windows User Guide

static const struct

{

const char *pszName;
CK_ULONG ulType;
int nFormat;

} ATypes[] =

{

bi

/* Name Attrbute ID Format type */
{ "CKA CLASS", CKA CLASS, FT ULONG},

{ "CKA TOKEN", CKA TOKEN, FT BOOL},

{ "CKA PRIVATE", CKA PRIVATE, FT BOOL},

{ "CKA_LABEL", CKA_LABEL, FT_BYTES},

{ "CKA_APPLICATION", CKA_APPLICATION, FT_BYTES},
{ "CKA VALUE", CKA VALUE, FT BYTES),

{ "CKA CERTIFICATE TYPE", CKA CERTIFICATE TYPE, FT ULONG},
{ "CKA ISSUER", CKA ISSUER, FT BYTES},

{ "CKA SERIAL NUMBER", CKA SERIAL NUMBER, FT_BYTES},
{ "CKA KEY TYPE", CKA KEY TYPE, FT ULONG},

{ "CKA_SUBJECT", CKA_SUBJECT, FT_BYTES},

{ "CKA ID", CKA ID, FT BYTES},

{ "CKA SENSITIVE", CKA SENSITIVE, FT BOOL},

{ "CKA ENCRYPT", CKA ENCRYPT, FT BOOL},

{ "CKA DECRYPT", CKA DECRYPT, FT BOOL},

{ "CKA WRAP", CKA WRAP, FT BOOL},

{ "CKA_UNWRAP", CKA_UNWRAP, FT_BOOL},

{ "CKA SIGN", CKA SIGN, FT BOOL},

{ "CKA SIGN RECOVER", CKA SIGN RECOVER, FT BOOL},
{ "CKA VERIFY", CKA VERIFY, FT BOOL},

{ "CKA VERIFY RECOVER", CKA VERIFY RECOVER, FT BOOL},
{ "CKA_DERIVE", CKA_DERIVE, FT_BOOL},

{ "CKA START DATE", CKA START DATE, FT BYTES},
{ "CKA END DATE", CKA END DATE, FT BYTES},

{ "CKA MODULUS", CKA MODULUS, FT BYTES},

{ "CKA MODULUS BITS", CKA MODULUS BITS, FT ULONG},

{ "CKA PUBLIC EXPONENT", CKA PUBLIC EXPONENT, FT_BYTES},

{ "CKA_PRIVATE_EXPONENT", CKA_PRIVATE_EXPONENT, FT_BYTES},
{ "CKA PRIME 1", CKA PRIME 1, FT BYTES},

{ "CKA PRIME 2", CKA PRIME 2, FT BYTES},

{ "CKA EXPONENT 1", CKA EXPONENT 1, FT BYTES},

{ "CKA EXPONENT 2", CKA EXPONENT 2, FT BYTES},

{ "CKA COEFFICIENT", CKA COEFFICIENT, FT BYTES},

{ "CKA_PRIME", CKA_PRIME, FT_BYTES},

{ "CKA_SUBPRIME", CKA_SUBPRIME, FT_BYTES},

{ "CKA BASE", CKA BASE, FT BYTES},

{ "CKA VALUE BITS", CKA VALUE BITS, FT BYTES},

{ "CKA VALUE_LEN", CKA VALUE LEN, FT_ULONG},

{ "CKA EXTRACTABLE", CKA EXTRACTABLE, FT_BOOL},

{ "CKA LOCAL", CKA LOCAL, FT BOOL},

{ "CKA_NEVER_EXTRACTABLE", CKA_NEVER_EXTRACTABLE, FT_BOOL},
{ "CKAiALWAYsisENSITIVE", CKA ALWAYS SENSITIVE, FTiBOOL},

{ "CKAiMODIFIABLE", CKA MODIFIABLE, FTiBOOL},

{ "CKA VENDOR DEFINED", CKA VENDOR DEFINED, FT BYTES},
¢, 0, 0}

CK_OBJECT HANDLE hObject;

CK_ULONG found = 0, row, j, len;

/* Careful: assume all attrbutes are less than sizeof (szBuffer) */
char szBuffer[4096];

CK_ATTRIBUTE a = { 0, szBuffer, 0 };

CK_BYTE PTR v;

int 1i;

int nTotal = 0;

Sample Code

printf ("Dumping all objects...\n");

/* Find *all* objects (NULL PTR means all objects) */
if ((rv = (*p->C FindObjectsInit) (hSession, NULL PTR, 0)) != CKR OK)
{

CKRLOG ("C_FindObjectsInit", rv);

return;
}
do
{
/*---- Locate the next object ----%/
if ((rv = (*p->C FindObjects) (hSession, &hObject, 1, &found))
l= CKR_OK)

CKRLOG ("C_FindObjects", rv);
return;

if (found == 1)
{

nTotal++;
/* Write out a header */
printf
("\n\n\n == Begin Object %d
\n",
nTotal);
/*-——— Loop for all possible attributes ----*/
for (i = 0; (ATypes[i].nFormat != 0); i++)
{
/* Load up the attribute which interests us... */

a.type = ATypes[i].ulType;
a.ulValueLen = sizeof (szBuffer);

rv = (*p->C GetAttributeValue) (hSession, hObject, &a, 1);

/*---- Print out the attribute ----%/
switch (rv)
{
case CKR OK:/* Attribute found */
printf ("%$-22s", ATypes[i].pszName);
switch (ATypes[i].nFormat)
{
case FT ULONG:
printf ("$lu\n", ((CK ULONG PTR) a.pValue) [0]);
break;
case FT BYTES:
/* print out a byte buffer in 16 byte blocks */
/* (ugly code but uninteresting) */
printf (" (%1lu bytes)\n", a.ulValuelen);
v = (CK_BYTE PTR) a.pValue;
for (row = 0; row < a.ulValuelLen; row += 16)
{
printf (" > ");
len = min(a.ulValuelLen - row, 16);
for (j = row; j < row + len; J++)
printf ("$02X ", (int) v[3j]);
for (j = row + len; Jj < row + 16; J++)

printf (" ")
for (j = row; j < row + len; j++)
printf ("$c", (isprint(v([j]) ? vI[j] : ".")):

printf ("\n");

52

53 IDGo 500 PKCS#11 Library for Windows User Guide

enroll.c

}
break;
case FT BOOL:
printf ((((CK _BBOOL *) a.pValue) [0]) ?
"TRUE\n" : "FALSE\n");
break;
default:
break;
}
break;
case CKR ATTRIBUTE SENSITIVE:
/* Opps! we're not allowed to see it */
printf ("%$-22s<sensitive>\n", ATypes[i].pszName);
break;
case CKR ATTRIBUTE TYPE INVALID:
/* This attrbute doesn't exist for this object */
break;
default:
CKRLOG ("C_GetAttributevalue", rv);
/* A real error has occured. */
return;

}

/* Write out a footer */

printf
(" End Object %d
\n",
nTotal) ;
#ifdef WIN32
printf ("Press a key to continue...");
getch();

#endif
}
}
while (found == 1);
printf ("\nTotal number of object(s) found = %d\n", nTotal);
return;

This sample performs all the operations needed to enroll a certificate.

/* include the common code */
#define RW_SESSION

#include "main.c"

#include <stdarg.h>

static char szBase64[] =
"ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopgrstuvwxyz0123456789+/";

#define MAX KEY BITS (1024)

CK CHAR szKeyId[64] = "Key";

CK_OBJECT HANDLE hPrivateKey, hPublicKey, hCert;
FILE *fp;

char szFileName[256];

CK CHAR szLabel[] = "My ID";

char Buffer[4096];

CK_BYTE KeyID[128];

CK _ULONG ulLen;

CK BBOOL bTrue = TRUE;

CK_OBJECT CLASS cert object class = CKO CERTIFICATE;

Sample Code 54

CK_CERTIFICATE_TYPE certType = CKC_X_509;
CK _ATTRIBUTE CertTemplate[] = {

{CKA CLASS, &cert object class, sizeof (CK OBJECT CLASS)} ,

{CKA TOKEN, &bTrue, Sizeof(CK_BBOOL)} ,

{CKA CERTIFICATE TYPE, &certType, sizeof (certType)} ,

{CKA ID, szKeyld, sizeof(szKeyId) - 1} ,

{CKA LABEL, szLabel, sizeof(szLabel) - 1} ,

{CKA VALUE, Buffer, sizeof (Buffer)} ,

{CKA SUBJECT, (char *)"(no subject)", 12} ,
;;**

* BEGIN PKCS#10 FUNCTIONS
*
* These functions and macros are used to format a certificate request. They are
* included for information only.
***/
typedef struct
{

CK_ULONG ullLen;

CK BYTE PTR pData;
} ADATA, *ADATA PTR;

#define TAG_INTEGER (0x02)

#define TAG BIT STRING (0x03)

#define TAG OID (0x06)
()
()
(

#define TAG PrintableString 0x13
#define TAG_SEQUENCE 0x30
#define TAG_SET 0x31)

#define O rsaEncryption "\x06\x09\x2A\x86\x48\x86\xF7\x0D\x01\x01\x01"
#define O SHAlwithRSAEncryption "\x06\x09\x2A\x86\x48\x86\xF7\x0D\x01\x01\
x05"

#define O emailAddress "\x06\x09\x2A\x86\x48\x86\xF7\x0D\x01\x09\x01"
#define O commonName "\x06\x03\x55\x04\x03"

#define O _country "\x06\x03\x55\x04\x06"

#define O organization "\x06\x03\x55\x04\x0A"

#define O organizationalUnit "\x06\x03\x55\x04\x0B"

/* void FreeADATA (ADATA PTR a) */

#define FreeADATA (x) {if(x) { 1if((x)->pData) free((x)->pData); free(x);}}
#define end (NULL)

/* ADATA PTR MakeADATA (CK BYTE PTR pData, CK ULONG ulLen) */
#define MakeADATA (x,y) CreateADATA(X,Y,Y)
/* ADATA PTR tlvaz(CK_BYTE Tag, ADATA PTR a) */

#define tlvaz(x,y) var tlv(x, MakeADATA("\x00", 1), y, NULL)
/* ADATA PTR tlv(CKﬁBYTE Tag, ADATA PTR a) */

#define tlv(x,Vy) var _tlv(x, y, NULL)

/* ADATA PTR NULL DER */

#define NULL DER MakeADATA ("\x05\x00", 2)

/* ADATA PTR BIT_STRING_encapSulateS(ADATA_PTR a) */

#define BIT STRING encapsulates(x) tlvaz(TAG BIT STRING, x)

/* ADATA PTR BIT STRING(CK BYTE PTR pData, CK ULONG ulLen) */

#define BIT STRING(x,y) BIT STRING encapsulates (MakeADATA (x, y))

/* ADATA PTR Printable (CK_CHAR PTR pszString) */

#define Printable (x) tlv (TAG PrintableString, MakeADATA(x, strlen(x)))
/* ADATA PTR CONTEXT SPECIFIC(CK BYTE Tag, ADATA PTR a) */

#define CONTEXT SPECIFIC(x, y) tlv((CK BYTE) (x | 0xA0), y)

/* ADATA PTR OID(CK CHAR PTR x) */

#define OID(x) MakeADATA (x, strlen(x))

static ADATA PTR CreateADATA (CK BYTE PTR pData,
CK_ULONG ulAllocLen, CK ULONG ulCopyLen)

{
ADATA PTR a;

55 IDGo 500 PKCS#11 Library for Windows User Guide

if ((a = calloc(sizeof (ADATA), 1)) == NULL)
return NULL;
if (ulAllocLen != 0)
{
if ((a->pData = calloc(ulAllocLen, 1)) == NULL)
return NULL;
if ((ulCopyLen != 0) && (pData != NULL))
memcpy (a->pData, pData, ulCopyLen);
}
a->ullen = ulAllocLen;
return a;

static ADATA PTR ConcatenateADATA (ADATA PTR al, ADATA PTR a2)

{
ADATA PTR ptr;

if (al == NULL)

al = CreateADATA (NULL, 0, 0);
if (a2 == NULL)

a2 = CreateADATA (NULL, 0, 0);

if ((ptr = CreateADATA (al->pData, al->ullen + a2->ullen,
al->ullen)) == NULL)
return NULL;
if (a2->ullen)
memcpy (& (ptr->pDatalal->ullen]), a2->pData, a2->ullen);

FreeADATA (al) ;
FreeADATA (a2) ;
return ptr;

static ADATA PTR ConstructADATA (CK BYTE Tag, ADATA PTR pFirst, va list m)
{

ADATA PTR pNext, pCurrent = NULL;
CK ULONG 1 = 0;
CK _BYTE Buff[8];

for (pNext = pFirst; pNext != NULL; pNext = va arg(m, ADATA PTR))
pCurrent = ConcatenateADATA (pCurrent, pNext);

Buff[i++] = (CK BYTE) Tag;

if (pCurrent == NULL)
Buff[i++] = 0x00;
else if (pCurrent->ullen < 0x80)
Buff[i++] = (CK BYTE) pCurrent->ullen;
else if (pCurrent->ullen < 0x100)
{
Buff[i++] = 0x81;
Buff[i++] (CK_BYTE) pCurrent->ullen;

}
else if (pCurrent->ullen < 0x10000)
{

Buff[i++] = 0x82;
Buff[i++] = (CK BYTE) (pCurrent->ullen >> 8) & OxFF;
Buff[i++] = (CK BYTE) pCurrent->ullLen & OxFF;

}
return ConcatenateADATA (MakeADATA (Buff, i), pCurrent);

Sample Code 56

static ADATA PTR var tlv(CK BYTE Tag, ADATA PTR pFirst, ...)
{

va list m;

va_start(m, pFirst);

return ConstructADATA(Tag, pFirst, m);

static ADATA PTR INTEGER(CK BYTE PTR pInteger, CK ULONG ulLen local)
{
if (pInteger[0] >= 0x80)
return tlvaz (TAG INTEGER, MakeADATA (pInteger, ulLen local));
else
return tlv(TAG INTEGER, MakeADATA (pInteger, ulLen local));

static ADATA PTR SET(ADATA_PTR pFirst, ...)
{
va_list m;
va start(m, pFirst);
return ConstructADATA (TAG SET, pFirst, m);

static ADATA PTR SEQUENCE(ADATA_PTR pFirst, ...)
{
va list m;
va start(m, pFirst);
return ConstructADATA (TAG SEQUENCE, pFirst, m);

/***

* END PKCS#10 FUNCTIONS

***/

/***

* DeleteAllObjects
*
* As its name implies, this deletes all the objects in the card. See sample
* deleteall.c from which this is pasted for more details
***/
static CK BBOOL DeleteAllObjects(void)
{
CK_OBJECT HANDLE hObject;
CK_ULONG found;
char szBuffer[8];

/*-—-- Get user confirmation (this will, after all, erase everything)----*/
printf ("\nThis will delete ALL exisiting certificates or outstanding\n\
certificate requests in the token. Continue? [y|n]: ");
fgets (szBuffer, sizeof(szBuffer), stdin);
if (strncmp(szBuffer, "y", 1))
return FALSE;

do
{
/*---- Search for an object ----*/
if ((rv = (*p->C FindObjectsInit) (hSession, NULL PTR, 0)) != CKR OK)
{
CKRLOG ("C_FindObjectsInit", rv);
return FALSE;

57 IDGo 500 PKCS#11 Library for Windows User Guide

if ((rv = (*p->C FindObjects) (hSession, &hObject, 1,
&found)) != CKR OK)

CKRLOG ("C_FindObjects", rv);

return FALSE;
}
if ((rv = (*p->C FindObjectsFinal) (hSession)) != CKR OK)
{

CKRLOG ("C_FindObjectsFinal", rv);

return FALSE;

if (found == 1)
{
/*-——— It's curtains for the object----*/
if ((rv = (*p->C DestroyObject) (hSession, hObject)) != CKR OK)

{
CKRLOG ("C DestroyObject", rv);
return FALSE;

}
while (found == 1);

return TRUE;

/*~k*************~k**************~k************~k~k********************************
* SignIt
*
* Signs some data. This is required because the certificate request needs to be
* self signed.
*
* Ensure that pulSignaturelen is already initialized before calling this
* function.
*‘k****‘k************‘k**********‘k***‘k****‘k***‘k****‘k***‘k‘k***‘k****‘k***‘k****‘k*****/
static void SignIt(CK BYTE PTR pData,

CK_ULONG ulDatalLen,

CK BYTE PTR pSignature,

CK_ULONG_PTR pulSignatureLen, CK OBJECT HANDLE hPrivateKey local)

CK _MECHANISM Mechanism = { 0, NULL PTR, 0 };

CK BYTE Hash([64];
CK_ULONG ulHashLen = sizeof (Hash);

/*---- Hash the data ----*/
Mechanism.mechanism = CKM SHA 1;
if ((rv = (*p->C DigestInit) (hSession, &Mechanism)) != CKR OK)

{
CKRLOG ("C_DigestInit", rv);
return;

if ((rv = (*p->C Digest) (hSession, pData, ulDatalen, Hash, &ulHashLen))
= CKR OK)

CKRLOG ("C_Digest", rv);

return;

/*---- Sign the hash ----*/
Mechanism.mechanism = CKM RSA PKCS;

Sample Code

if ((rv = (*p->C SignInit) (hSession, &Mechanism, hPrivateKey local))
CKR_OK)
{
CKRLOG ("C_SignInit", rv);
return;

if ((rv = (*p->C Sign) (hSession, Hash, ulHashLen,
pSignature, pulSignatureLen)) != CKR OK)

CKRLOG ("C_Sign", rv);
return;

I =

58

/***

* RequestCertificate

*

* The steps in the certificate request process are:

*

* - Generate an RSA key pair

* - Read the modulus (public key value) from the token

* - as user for the name to be put in the request

* - Format the ToBeSigned part of the request which contains the name and
* public key

* - sign ToBeSigned with the private key

*

- append new signature to ToBeSigned

* - Convert to Base64 and write request to a text file
*

***/

static void RequestCertificate (void)

{
CK_ULONG mod bits = 1024;

CK_ATTRIBUTE GenPubTemplate[] = {
{CKA_MODULUS BITS, &mod bits, sizeof (CK ULONG)} ,
{CKA_PUBLIC EXPONENT, (char *)"\x01\x00\x01", 3} ,
{CKA TOKEN, ¢&bTrue, sizeof (CK BBOOL)} ,
{CKA_ID, szKeyId, 3}

}i

CK_ATTRIBUTE GenPrivTemplate[] = {
{CKA TOKEN, &bTrue, Sizeof(CK_BBOOL)} ,
{CKA PRIVATE, &bTrue, sizeof (CK BBOOL)} ,
{CKA SENSITIVE, &bTrue, sizeof (CK BBOOL)} ,
{CKA_ID, szKeyId, 3}

}i

CK_BYTE modulus[MAX KEY BITS / 8];

CK_ATTRIBUTE Modulus = { CKA MODULUS, modulus, sizeof (modulus) };

CK_BYTE SignBuffer[MAX KEY BITS / 8];
CK_ULONG ulSignLen = sizeof (SignBuffer);

CK_MECHANISM Mechanism = { CKM RSA PKCS KEY PAIR GEN, NULL PTR, 0 };
unsigned int 1i;
ADATA PTR pPKCSl0Oreq, ToBeSigned;
typedef struct
{
const char *oid;
char szValue[64];
const char *text;
} LTABLE;
CK_ULONG j, nCertLen;
CK BYTE PTR pCert;

59 IDGo 500 PKCS#11 Library for Windows User Guide

LTABLE 1[] = {
{O_commonName, "", "name (e.g. Fred Bloggs):"},
{O_emailAddress, "", "email address (e.g. fred@Racme.com):"},
{O_organizationalUnit, "",
"organisation unit (e.g. Cleaning Dept.):"},
{O_organization, "", "organisation (e.g. ACME Inc.):"},

{O_country, "", "2 letter ISO country code (e.g. US, FR):"}
}i

/*---- First we generate the key pair ----*/

if ((rv = (*p->C GenerateKeyPair) (hSession, &Mechanism,
GenPubTemplate, 4,
GenPrivTemplate, 4, &hPublicKey, &hPrivateKey)) != CKR OK)

CKRLOG ("C_GenerateKeyPair", rv);
return;

/* Read modulus */
if ((rv = (*p->C GetAttributeValue) (hSession,
hPrivateKey, &Modulus, 1)) != CKR OK)

CKRLOG("C_GetAttributeValue", rv) ;
return;

/*---- Create PKCS#10 Certificate Request ----*/

/* what is the user's name ? */
for (1 = 0; 1 < sizeof(l) / sizeof (LTABLE); i++)
{
printf ("Your %s", 1[i].text);
fgets(1[i].szValue, sizeof(l[i].szValue), stdin);

/* create the ToBeSigned part of the request */
ToBeSigned = SEQUENCE (INTEGER ("\x00", 1),// Version
SEQUENCE (// SubjectName
SET (SEQUENCE (OID(1[0] .0id), Printable(1[0].szValue), (end)), (end)),

SET (SEQUENCE (OID(1[1].0id), Printable(l[1].szValue), (end)), (end)),
SET (SEQUENCE (OID(1[2].0id), Printable(1[2].szValue), (end)), (end)),
SET (SEQUENCE (OID(1[3].0id), Printable(1[3].szValue), (end)), (end)),
SET (SEQUENCE (OID(1[4].0id), Printable(1[4].szValue), (end)), (end)), (end)),

SEQUENCE (// SubjectPublicKeyInfo
SEQUENCE (OID (O rsaEncryption), NULL DER, (end)),
BIT STRING encapsulates(// subjectPublicKey
SEQUENCE (_INTEGER (Modulus.pValue, Modulus.ulValuelen), _INTEGER("\
x01\x00\x01", 3), (end))), (end)), CONTEXT SPECIFIC(0, NULL),/* attributes */
(end)) ;

/* sign the request */
SignIt (ToBeSigned->pData,

ToBeSigned->ullen, SignBuffer, &ulSignLen, hPrivateKey);
if (rv != CKR OK)

return;

/* Append signature */

PPKCS10req =
SEQUENCE (ToBeSigned,
SEQUENCE(OID(O_SHAlwithRSAEncryption), NULL DER, (end)),
BIT STRING(SignBuffer, ulSignLen), (end));

/* write request to file in Base64 format */

printf ("File in which to put certificate request:");
fgets(szFileName, sizeof (szFileName), stdin);
if (!strcmp(szFileName, ""))
return;
if ((fp = fopen(szFileName, "w")) == NULL)
{
printf ("Error: Could not open %s\n", szFileName);
return;

nCertLen = pPKCS10reg->ullen;
pCert = pPKCS10reg->pData;

/* Convert to Base64d */
fprintf (fp, "----- BEGIN CERTIFICATE REQUEST----- ")
for (3 = 0; j < (nCertlLen - nCertlen % 3); j += 3)
{
if (3 % 48 == 0)
fputc('\n', fp);
fputc (szBase64 [0x3F & (pCert[j] >> 2)], fp);
fputc(szBase64 [0x3F & ((pCert[j] << 4) + (pCert[j +

Sample Code

11 >> 4))], fp);

fputc (szBase64 [0x3F & ((pCert[j + 1] << 2) + (pCert[j + 2] >> 6))],

fp);
fputc (szBase6d4 [0x3F & (pCert[j + 21)1, fp);

/* Deal with the end conditions */
if ((nCertlLen % 3) == 1)

if (3 % 48 == 0)
fputc('\n', fp);
fputc (szBase64 [0x3F & (pCert[j] >> 2)], fp);
fputc (szBase64 [0x3F & (pCert[j] << 4)], fp);
fputc('=", fp);
fputc('="', fp);
}
else if ((nCertLen % 3) == 2)
{
if (7 % 48 == 0)
fputc('\n', fp);
fputc (szBase64 [0x3F & (pCert[j] >> 2)], fp);
fputc(szBase6d [(0x3F & (pCert[j] << 4)) + (pCert[]j
fputc(szBase6d4 [0x3F & (pCert[] + 1] << 2)], fp);
(

fputc('=', fp);
}
fprintf (fp, "\n----- END CERTIFICATE REQUEST----- \n") ;
fclose (fp);

+ 11 >> 4)], fp);

FreeADATA (pPKCS10req) ; /* Important! pToBeSigned has already been freed */

printf ("Certificate request complete!\n\

Send to a CA and restart this program when you receive the certificate.");

}

60

/***

* InstallCertificate
*
* Following a request, the CA will send us a certificate.

* it in our token.
*

We need to install

***/

static void InstallCertificate(void)

61 IDGo 500 PKCS#11 Library for Windows User Guide

int d;

CK BYTE modulus[MAX KEY BITS / 8];

CK_ULONG . ks

int 1 = 2;

CK_ATTRIBUTE Modulus = { CKA MODULUS, modulus, sizeof (modulus) };

printf ("File which contains the certificate sent to you by CA:");
fgets(szFileName, sizeof (szFileName), stdin);
if (!strcmp(szFileName, ""))
return;
if ((fp = fopen(szFileName, "r")) == NULL)
{
printf ("Error: Could not open %s\n", szFileName);
return;

/* find block start */

while (fgets(Buffer, sizeof (Buffer), fp) != NULL)
if (!memcmp (Buffer, "----", 4))
break;

/* Read in the certificate and convert from base64 */
memset (Buffer, 0, sizeof (Buffer));

do
{

char *p local;
if (((d = fgetc(fp)) == EOF) ||/* (unexpected end of file) */
(ulLen == sizeof (Buffer) - 1))/* (overflow) */

printf ("Error: Badly formatted certificate file.\n");

return;
}
if ((p_local = strchr(szBase64, (char) d)) != NULL)
{
if (1 != 2)
Buffer[ulLen - 1] |= (p_local - szBase64) >> (8 - i) % 8;
if (i)
{
Buffer[ullLen] |= (p local - szBase64) << i;
ulLen++;
}
1= (1+4+2) %8;
}
}
while (strchr("-=", (char) d) == NULL);/* (footer found) */

ulLen--;

/* We just check that the certificate contains the modulus somewhere.

*/

if ((rv = (*p->C GetAttributeValue) (hSession,
hPrivateKey, &Modulus, 1)) != CKR OK)

CKRLOG ("C_GetAttributeValue", rv);
return;

for (3 = 0, k =0; (J <ullen) && (k < Modulus.ulValueLen); Jj++)

Sample Code 62

if (Buffer[j] == ((CK _BYTE PTR) Modulus.pValue) [k])
k++;
else
k = 0;
}
if (k != Modulus.ulValueLen)
{
printf
("\nError: Certificate does not correspond to previous request");
return;

CertTemplate[5] .ulValuelen = ullen;
if ((rv = (*p->C CreateObject)
(hSession, CertTemplate, 7, &hCert)) != CKR OK)

CKRLOG ("C CreateObject", rv);
return;

printf ("\nCertificate successfully installed!");

/***
* void SampleFunction (void)

*

*

***/

void SampleFunction (void)

{

#define CERTIFICATE REQUEST (1)
#define CERTIFICATE INSTALL (2)

int nChoice;
char szChoice[32];
const char *pszState;
CK_ULONG count;
CK_OBJECT CLASS priv object class = CKO PRIVATE KEY;
CK_KEY TYPE key type = CKK_RSA;
CK_ATTRIBUTE KeyTemplate[] = {
{CKA CLASS, &priv object class, sizeof (CK OBJECT CLASS) }
4
{CKA_KEY TYPE, &key type, sizeof (CK KEY TYPE)}
i
char szGreeting[] = "\
(c) 2008 Gemalto Development\n\
\n\
Enroll allows you to:\n\
\n\
1. Request a new certificate\n\
2. Install a certificate\n\
\n\
Normally you should select 1 to request a certificate and then send\n\
the request to a Certification Authority(CA). The CA will issue you\n\
with a certificate and you should restart this program and select\n\
option 2 to install the new certificate in your token.\n\

\n\
[Current token state: %s]\n\
\n\

Enter your choice: ";

63 IDGo 500 PKCS#11 Library for Windows User Guide

/*---- Find an RSA Private key ----*/
if ((rv = (*p->C FindObjectsInit) (hSession, KeyTemplate, 2)) != CKR OK)
{

CKRLOG ("C_FindObjectsInit", rv);

return;

if ((rv =
(*p->C_FindObjects) (hSession, &hPrivateKey, 1,
&count)) != CKR OK)

CKRLOG ("C_FindObjects", rv);
return;

if ((rv = (*p->C FindObjectsFinal) (hSession)) != CKR OK)

CKRLOG ("C_FindObjectsFinal", rv);

return;
}
if (count != 1)

hPrivateKey = NULL PTR;
/* Update the CK_ID field in the certificate template */
else 1if ((rv =

(*p->C_GetAttributeValue) (hSession, hPrivateKey,
&CertTemplate[3], 1)) != CKR OK)

CKRLOG ("C_GetAttributeValue", rv);
return;

/*---- Find a corresponding certificate ----%*/
if ((rv = (*p->C FindObjectsInit) (hSession, CertTemplate, 4)) != CKR OK)

CKRLOG ("C_FindObjectsInit", rv);
return;

if ((rv = (*p->C FindObjects) (hSession, &hCert, 1, &count)) != CKR OK)

CKRLOG ("C_FindObjects", rv);
return;

if ((rv = (*p->C FindObjectsFinal) (hSession)) != CKR OK)

CKRLOG ("C_FindObjectsFinal", rv);
return;

if (count != 1)
hCert = NULL_PTR;

/*---- Display greeting ----%*/
if (hPrivateKey == NULL PTR)
pszState = "Empty.";
else if (hCert != NULL PTR)
pszState = "Certificate already installed.";
else
pszState = "Certificate request made.";
printf (szGreeting, pszState);
fgets (szChoice, sizeof (szChoice), stdin);
if (sscanf(szChoice, "%d", &nChoice) != 1)
return;

/*---- Delete existing objects if necessary ----*/

genkey.c

Sample Code 64

if ((nChoice == CERTIFICATE REQUEST) && (hPrivateKey != NULL PTR))
{
if (DeleteAllObjects())
{
hPrivateKey = NULL PTR;
hCert = NULL PTR;
}
else
return;
}
if ((nChoice == CERTIFICATE INSTALL) && (hPrivateKey == NULL PTR))
{
printf
("\nError: Can not install certificate because request has not been
made") ;
return;
}
if ((nChoice == CERTIFICATE INSTALL) && (hCert != NULL PTR))
{
printf
("\nError: A certificate has already been installed in this token");
return;

if (nChoice == CERTIFICATE_REQUEST)
RequestCertificate();

else if (nChoice == CERTIFICATE INSTALL)
InstallCertificate();

This sample demonstrates the generation of an RSA key pair. Firstly the bit size of the
key is entered by the user. The key generation uses the minimum templates, that is,
containing only the mandatory parameters. The Modulus is then printed out. The user
is assumed to have previously logged in (C_Login) and the card must have a key
container for the requested key size.

/* include the common code */
#include "main.c"

/************************‘k****‘k***‘k**k*k*‘k********‘k*****************************
* void SampleFunction (void)
*
***/
void SampleFunction (void)
{
char szSize[10];
CK_BYTE Buffer([512];
CK ULONG i, ulSize;
CK_OBJECT HANDLE hPubKey, hPrivKey;
CK_BBOOL bTrue = TRUE;
CK_MECHANISM Mechanism = { 0, NULL_ PTR, 0 };
CK_ATTRIBUTE PubTemplate[] = {
{ CKA MODULUS BITS, &ulSize, Sizeof(CK_ULONG)} ,
{ CKA PUBLIC_EXPONENT, "\x01\x00\x01", 3} ,
{ CKA TOKEN, &bTrue, sizeof (CK BBOOL)} };
CK ATTRIBUTE PrivTemplate[] = {
{ CKA TOKEN, &bTrue, Sizeof(CK_BBOOL)} ,
{ CKA PRIVATE, &bTrue, Sizeof(CK_BBOOL)} B
{ CKA SENSITIVE, &bTrue, Sizeof(CK_BBOOL)} }s

65 IDGo 500 PKCS#11 Library for Windows User Guide

CK_ATTRIBUTE GetModulusTemplate[] = {
{ CKA MODULUS, Buffer, sizeof (Buffer)} };

/*-——— Get the RSA key size ----*/
printf ("\nEnter RSA key bit size: ");
i=0;

fgets(szSize, sizeof(szSize), stdin);
ulSize = atoi(szSize);
printf ("\n\nGenerating RSA key pair, please wait...\n\n");

/*---- Set the RSA key generation mechanism ----%*/
Mechanism.mechanism = CKM RSA PKCS KEY PAIR GEN;
Mechanism.pParameter = NULL PTR;
Mechanism.ulParameterLen = 0;

/*--—— Generate RSA key pair ----*/

rv = (*p->C_GenerateKeyPair) (hSession,// Session handle
&Mechanism, // RSA Key Gen. mechanism
PubTemplate, // Template for RSA Public key
3, // Attributes in previous template
PrivTemplate, // Template for RSA Private key
3, // Attributes in previous template
&hPubKey, // Handle of Public key, returned
&hPrivKey // Handle of Private key, returned

);
if (rv != CKR _OK)
return;

/*---- Display Modulus Value ----*/

rv = (*p->C GetAttributeValue) (hSession,// Session handle
hPubKey, // Handle of Public Key
GetModulusTemplate,// Modulus template
1 // Number of attributes
)7

if (rv != CKR_OK)
return;

printf ("Modulus value: ");

for (i = 0; i1 < GetModulusTemplate[O].ulValuelLen; i++)
printf ("$02X", Buffer[i]);

printf ("\n\n");

loadkey.c

This sample demonstrates the loading of an RSA key pair. The key to load is stored as
static variables. The private key part is created and loaded, then the public key part is
created and loaded. The user is assumed to have previously logged in (C_Login) and
the card must have a key container for the requested key size. The “dumpit” sample
(see “dumpit.c” on page 50) can be used to check the key pair is correctly created.

/* include the common code */

#define RW_SESSION

#include "main.c"
/‘k‘k***‘k‘k**‘k‘k**‘k‘k‘k*‘k‘k‘k‘k*‘k‘k‘k*‘k‘k‘k‘k*‘k*‘k*‘k‘k*‘k*‘k*‘k**‘k***‘k***************************
* void SampleFunction (void)

*

*************************‘k****‘k***‘k****‘k*************************************/

void SampleFunction (void)

{
// RSA 1024 bit static key

static unsigned char

Oxe2,
Oxae,
0x1d,
0xc8,
0x34,
0xdo,
Oxe4,
0xd7,
0x07,
0x83,
0xb3,
0x67,
}i

Oxde,
0xd9,
0x47,
0xc4,
Oxeb,
0xc5,
0x0f,
0x90,
Oxec,
0x83,
0xa2,
Oxcc,

Oxaa,
0x76,
0x01,
0x11,
0x18,
0xb8,
0x37,
Oxel,
0x83,
Oxbc,
Oxfa,
Oxce,

static unsigned char

0x01,
¥

0x00,

0x01

static unsigned char

0x3c,
0x2e,
0x60,
0x17,
Oxfe,
0x93,
0x2f,
0x72,
0xc3,
Oxeb5,
Oxde,
0xc3,
}i

Oxec,
Oxla,
Oxal,
0x92,
0xe3,
0x7e,
0x02,
Oxal,
0x5e,
0x9a,
0x86,
0x76,

Ox2c,
0x09,
0x53,
Oxc7,
Oxef,
Ox2e,
0x94,
Oxaa,
0x30,
0x5f,
0x76,
Oxa6,

static unsigned char

0x£f8,

Oxbb,

0xc7,

0x81,

0x7c,

0xf2,
}i

0x29,
0x54,
0x30,
0x37,
0x0d,
0x3a,

0x88,
0xfb,
0x08,
0x89,
0x57,
0x59,

static unsigned char

Oxea,

0x26,

0xf9,

0x61,

Oxeb5,

0x74,
bi

0x08,
0xc0,
0x03,
0xd7,
Ox2e,
0x01,

0xf9,
Oxeb,
0x60,
0x48,
0x40,
Ox1f,

static unsigned char

0x59,

0x2e,

0xc3,

Oxe2,

0xc7,

0x£f7,
}i

0xfd,
0x7a,
0x67,
0x0a,
Oxac,
0x1d,

0x0d,
0x39,
0x3a,
0x96,
0x3a,
0x8b,

static unsigned char

0xd2,
0x4f,
Ox6e,
0x71,
0x41,
0xa0,

0xb6,
Oxaa,
0x9e,
0x2f,
0x35,
0x77,

Ox6e,
0x12,
0x2a,
0x21,
0x19,
0x7a,

RSA MODULUS[] = {

0x0f,
0x94,
Oxcc,
0x38,
0x8b,
0x20,
0x40,
0x6d,
0x5d,
0xal,
0xf5,
0x44,

RSA PUBLIC EXPONENT[]

0x43,
Oxde,
0x3d,
Oxab,
0x41,
0x66,
Oxe5,
0x5a,
Oxcf,
Ox4f,
Ox2e,
Oxcl,

0x47,
0x7a,
0x62,
0x5c,
0x74,
Oxad,
0x43,
Oxa4,
0x5d,
0x67,
0x5f,
Oxbl,

0x5d,
Oxdc,
Oxe7,
0x69,
0x07,
0xa9,
0x7b,
0x02,
0x54,
0x24,
0x85,
0x83

RSA PRIVATE EXPONENT[]

0x60,
Oxa4,
0xd3,
0x49,
0x08,
Oxee,
0x31,
0xe0,
0xa8,
0x7f,
0xb7,
0x8a,

RSA PRIME 1[] = {

0x48,
0x8e,
Oxchb,
0x9e,
0x2d,
0x89,

RSA PRIME 2[] = {

0xdo6,
Oxeb,
0x£f7,
0x29,
0x12,
0xbo,

0xc2,
Oxfa,
0x43,
0x1d,
0x5e,
Oxcc,
Ox4c,
Oxle,
0xd3,
Oxcf,
0xd9,
0x87,

0xc0,
0x28,
Ox6a,
0x£f7,
Oxa2,
0x40,

Oxae,
0x2d,
Oxde,
Oxca,
0xe0,
0xa0,

Oxel,
0x85,
Oxdc,
Oxeb,
0x40,
0x83,
Ox1f,
Oxec,
Oxa8,
0x£f5,
0x78,
Oxaa,

0x44,
Oxc7,
0xe9,
Oxc4,
Oxc4,
Oxcc,

0x51,
0x92,
0xf7,
0x22,
Ox8e,
0xdo,

RSA EXPONENT 1[]

0x8b,
Oxa2,
0xb9,
0xal,
Oxcl,
0x9c,

0x7c,
0x2a,
0x30,
0x0b,
0xb4,
0x46,

0x15,
0x4d,
0xf2,
Oxae,
0xb5,
0xeO0,

RSA EXPONENT 2]

0x2b,
Oxbe,
0x2a,
0x9b,
Ox1f,
0x94,

Ox6a,
0xdf,
0x42,
Oxee,
0x65,
0x35,

Oxlc,
0x£f3,
0x27,
0x90,
Oxeb,
Oxca,

0x64,
Oxab,
Oxce,
Oxcd,
0x49,
0xf0,
0x63,
0x77,
0x8f,
0x36,
0x97,
0xd9

Oxec,
Oxcd,
Oxaa,
0x88,
0x21,
0x85,

0xf3,
Oxal,
Ox6e,
0xd7,
0xf5,
0x48,

{
0x42,
0x91,
Oxbc,
Oxbc,
0x34,
0x23,

{
0x03,
0x4b,
0xc9,
Oxdc,
0x91,
0x11,

0xc3,
Oxef,
0x77,
0x05,
0x09,
0x41,
0x6b,
Oxbe,
0xe3,
0x8f,
0xa3,

{

{
0x45,
0xd4,
0x69,
0xf1,
0x2f,
0x02,
0xf8,
Oxle,
0xa3,
0x6d,
0x39,

0x01,
Ox1la,
0xd6,
Oxcft,
0x49,
Oxla,

0xbf,
0x8e,
Oxcb,
0x9c,
0x8a,
0x43,

0x13,
0xa5s,
0xdd,
0x01,
0x71,
0x20,

0x37,
0x5e,
0x2b,
O0x4b,
0x0c,
0xa6,

0x6a,
0x01,
0xf8,
Oxce,
0xco6,
Ox4b,
0x84,
0xco6,
0x69,
0x13,
0x70,

0x78,
Oxac,
Oxcl,
0x18,
0x8f,
Oxaf,
0x13,
Ox4c,
Oxa’7,
0x5a,
Oxed,

0xd2,
Oxel,
0xb8,
Oxed,
Oxc4,
0x8f

0x7b,
Oxaf,
0x22,
0x05,
Oxee,
Oxcd

0xc3,
Oxbe,
0x92,
0xd2,
0x00,
0x27

Oxfe,
Ox6a,
0x3f,
Ox6f,
0x1b,
0x69

Sample Code

Oxbd,
0x53,
0x1b,
0x36,
O0xd1l,
0x10,
0x21,
0x24,
0x83,
0xb9,
Oxdc,

Oxel,
0xd7,
Oxff,
0x2a,
Oxeb,
0x23,
O0xab,
0xf4,
0x13,
0xa3,
0x2f,

Oxcd,
0x5Db,
Oxad,
Oxca,
0x55,

0x8f,
0xbd,
Ox2e,
Oxed,
0x06,

0x32,
0xb4,
0x25,
0x73,
0x7e,

0x09,
0xcO,
0x85,
0xd2,
Ox2e,

0xf9,
0xb0,
0xd7,
0x2c,
Oxb4,
Ox1f,
0x28,
0x16,
0xc7,
0x24,
0xa3,

Oxal,
0x8b,
0xc0,
0x25,
0x7a,
0x1d,
0x9d,
0xb8,
0x67,
Oxef,
0x71,

0xb2,
0x49,
0xf1,
Oxcl,
0xf1l,

0x52,
Oxee,
0xdd,
0x40,
0x88,

0x8e,
0x90,
0x55,
Oxed,
0x3d,

0x96,
0xb9,
Oxae,
0xa3,
Oxea,

67 IDGo 500 PKCS#11 Library for Windows User Guide

i

static unsigned char RSA COEFFICIENT[] = {
0x3d, 0x02, Oxde, 0xc3, 0x27, Oxle, Oxad4, 0x87, 0x10, 0xb8, 0xb2,
0x83, 0x18, 0x7d, 0x35, 0x59, 0x52, 0x94, 0xb0, Oxcb, 0x67, 0x44,
0x97, 0x0c, Oxe2, 0x4f, 0x28, Ox7a, 0x86, 0x8d, 0x5d, 0Oxcl, Ox2e,
0xf8, Oxab, Oxb5, 0x88, 0x55, 0x89, 0x37, 0xb5, 0x8c, 0xed, 0x35,
0x7e, 0xb9, 0xdb, 0x6f, 0x46, 0x0e, 0x07, Oxde, 0x74, 0xb6, 0x7a,
Ox1f, 0xb8, 0Ox6b, 0Ox6d, Oxe2, 0x89, 0x83, 0x09, O0xlb

}i

CK_ULONG ulSize = 1024;

CK_OBJECT HANDLE hPubKey, hPrivKey;

CK_BBOOL bTrue = TRUE;

CK KEY TYPE key type = CKK RSA;

CK_OBJECT CLASS pub object class = CKO PUBLIC KEY;

CK_ATTRIBUTE PubTemplate[] = {
{CKA CLASS, &pub object class, sizeof (CK OBJECT CLASS)} ,
{CKA_KEY TYPE, &key type, sizeof (CK KEY TYPE)} ,
{CKA TOKEN, &bTrue, sizeof (CK BBOOL)} ,
{CKA_MODULUS, RSA MODULUS, Sizeof(RSA_MODULUS)} ,
{CKAiPUBLlciEXPONENT, RSA PUBLIC EXPONENT, sizeof(RSAﬁPUBLICiEXPONENT)}

}i

CK_OBJECT CLASS priv _object class = CKO PRIVATE KEY;

CK_ATTRIBUTE PrivTemplate[] = {
{CKA CLASS, &priv object class, sizeof (CK OBJECT CLASS)} ,
{CKA KEY TYPE, &key type, sizeof (CK KEY TYPE)} ,
{CKA TOKEN, &bTrue, sizeof (CK BBOOL)} ,
{CKA PRIVATE, &bTrue, Sizeof(CK_BBOOL)} ,
{CKA SENSITIVE, &bTrue, Sizeof(CK_BBOOL)} ,
{CKA MODULUS, RSA MODULUS, Sizeof(RSA_MODULUS)} ,
{CKA_PUBLIC_EXPONENT, RSA_PUBLIC_EXPONENT, sizeof(RSA_PUBLIC_EXPONENT)} ’
{CKA_PRIVATE_EXPONENT, RSA_PRIVATE_EXPONENT,

sizeof (RSA PRIVATE EXPONENT)} ,

{CKA_PRIME 1, RSA PRIME 1, sizeof (RSA PRIME 1)} ,
{CKA_PRIME 2, RSA PRIME 2, sizeof (RSA PRIME 2)} ,
{CKA_EXPONENT 1, RSA EXPONENT 1, sizeof (RSA_EXPONENT 1)} ,
{CKA EXPONENT 2, RSA EXPONENT 2, sizeof (RSA EXPONENT 2)} ,
{CKA_COEFFICIENT, RSA_COEFFICIENT, sizeof(RSA_COEFFICIENT)}

i

/*-——— Create and load RSA private part ----*/

printf ("\n\nCreating & Loading RSA private key part, please wait...\n\n");

rv = (*p->C_CreateObject) (hSession,// Session handle
PrivTemplate, // Template for RSA Private key
13, // Attributes in previous template
&hPrivKey // Handle of Private key, returned
)

if (rv != CKR OK)
return;

/*---- Create and load RSA public part ----%/
printf ("\n\nCreating & Loading RSA public key part, please wait...\n\n");
rv = (*p->C CreateObject) (hSession,// Session handle
PubTemplate,// Template for RSA Public key
5, // Attributes in previous template
&hPubKey // Handle of Public key, returned
)i
if (rv != CKR _OK)
return;

pincode.c

Sample Code 68

This sample demonstrates the PIN code management functions. In particular, the use
of C_SetPin in order to change either the user or the Security Officer’'s (SO) PIN and
the use of the SO's PIN with the C_InitPin function to unblock the token. A token
becomes blocked (unusable) if the user has incorrectly presented the User PIN more
than 3 times. If the SO PIN is presented incorrectly 3 times, this will be blocked too and
can never be unblocked. PIN codes are normally 4 digits.

/* This flag means that the main code will not log in the user at startup */
#define NO LOGIN
#define RW_SESSION

/* include the common code */
#include "main.c"

#define fromhex (x) (x-((x>="'0")6&&(x<="9")2'0": ((x>="A")&&(X<="F")?2'7":"W")))

/*~k~k***~k~k**~k*******************~k~k**~k~k~k**~k~k**~k*********************************
* void SampleFunction (void)
*
********************‘k***‘k‘k**‘k‘k‘k***‘k****‘k***‘k****‘k***‘k‘k***‘k****‘k***‘k**********/
void SampleFunction (void)
{

char szNewPinCode[49];

char szConfirmNewPinCode[49];

CK USER TYPE user type;

char 1ine[80];

CK_BBOOL bUnblock;

char szTempNewPinCode[50];

char szTempPinCode[50];

CK_ULONG ulNewPinLen;

CK ULONG ulPinLen;

register size t i;

int iCase = 0;

/*---- Get some pin codes from the console ----*/
printf("1. Change user pin\n\

2. Change Security Officer pin\n\

3. Unblock user pin.\nChoose option: ");
fgets(line, sizeof(line), stdin);
switch(1line[0])

{
case 'l':
{
user type = CKU USER;
bUnblock = FALSE;

iCase = 1;
}
break;
case '2':

{
user type = CKU_SO;
bUnblock = FALSE;
iCase = 2;

}

break;

case '3':

69 IDGo 500 PKCS#11 Library for Windows User Guide

user type = CKU_SO;
bUnblock = TRUE;
iCase = 3;

}

break;

default:
{

printf ("Error: Invalid option.\n");

return;
}
}
printf ("\nEnter %s pin code: ", (bUnblock ? "Security Officer" : "old"));
fgets (szPinCode, sizeof (szPinCode), stdin);
szPinCode[strlen(szPinCode)-1] = '"\0';
printf ("Using %s pin: %s\n", (bUnblock ? "Security Officer" : "old"),
szPinCode) ;
printf ("\nEnter new %spin code: ", (bUnblock ? "User " : ""));
fgets (szNewPinCode, sizeof (szNewPinCode), stdin);
szNewPinCode[strlen (szNewPinCode)-1] = '"\0';
printf ("Using new %spin: %s\n", (bUnblock ? "User " : ""), szNewPinCode);

printf ("\nConfirm new %spin code: ", (bUnblock ? "User " : ""));

fgets (szConfirmNewPinCode, sizeof (szConfirmNewPinCode), stdin);

szConfirmNewPinCode [strlen (szConfirmNewPinCode)-1] = '\0';

printf ("Using Confirm new %spin: %s\n", (bUnblock ? "User " : ""),
szConfirmNewPinCode) ;

printf ("\n");

if (strcmp(szConfirmNewPinCode, szNewPinCode))

{
printf ("Error: New pin code is not confirmed.\n");
return;

ulNewPinLen = (CK _ULONG)strlen (szNewPinCode) ;
ulPinLen = (CK ULONG)strlen(szPinCode) ;

// Regarding the SO PIN, we have to consider this is not an ASCII PIN code.
// This is the administrator key of the .NET smartcard which is a 24 bytes
// buffer to transform from the incoming 48 characters ASCII buffer.

// Change PIN user
if(1 == iCase)
{

}
// Change PIN adm
else 1if(2 == iCase)
{
// Prepare the old PIN SO
memset (szTempPinCode, 0, sizeof(szTempPinCode));
ulPinLen = ulPinlen / 2;
for(i =0 ; 1 < strlen(szPinCode) ; i += 2)
{
szTempPinCode[1 / 2] = (fromhex(szPinCode[i]) << 4) + fromhex(
szPinCode[1 + 1]);
}

mencpy (szPinCode, szTempPinCode, ulPinlen);

Sample Code 70

// Prepare the new PIN SO
menmset (szTempPinCode, 0, sizeof(szTempPinCode));
ulNewPinLen = ulNewPinlen / 2;
for(i =0 ; i < strlen(szNewPinCode) ; i += 2)
{
szTempNewPinCode [i
fromhex (szNewPinCode[i + 1

}

mencpy (szNewPinCode, szTempNewPinCode, ulNewPinlLen);

’

/ 2 1 = (fromhex(szNewPinCode[1]) << 4) +
1)

}
// Unbock PIN user

else 1f(3 == iCase)
{
// Prepare the PIN SO
menmset (szTempPinCode, 0, sizeof(szTempPinCode));
ulPinLen = ulPinlen / 2;
for(1 =0 ; 1 < strlen(szPinCode) ; 1 += 2)
{
szTempPinCode[1 / 2] = (fromhex(szPinCode[i]) << 4) + fromhex(
szPinCode[1 + 1 1);

}

memcpy (szPinCode, szTempPinCode, ulPinlen);

/*---- Pass these pin codes to the token ----*/
if ((rv = (*p->C _Login) (hSession,
user type, szPinCode, ulPinLen)) != CKR OK)

CKRLOG ("C Login", rv);
return;

if (bUnblock)

{
if ((rv = (*p->C InitPIN) (hSession,
(CK_CHAR *)szNewPinCode, ulNewPinLen)) != CKR OK)

CKRLOG ("C_InitPIN", rv);

return;
}
}
else
{
if ((rv = (*p->C_SetPIN) (hSession,
szPinCode,
ulPinLen,
(CK_CHAR *)szNewPinCode, ulNewPinLen)) != CKR OK)
{
CKRLOG ("C_SetPIN", rv);
return;
}
}
if ((rv = (*p->C Logout) (hSession)) != CKR OK)

{
CKRLOG ("C_Logout", rv);
return;

printf ("Pin code operation sucessful!\n");

71 IDGo 500 PKCS#11 Library for Windows User Guide

random.c

signit.c

This sample demonstrates the true random number generation function of the token.

Note: The user must be logged in to use this function.

/* include the common code */
#include "main.c"

/***

* void SampleFunction (void)
***/

void SampleFunction (void)
{
CK_BYTE RndBuff[128];
unsigned int 1i;

if ((rv = (*p->C_GenerateRandom)
(hSession, RndBuff, sizeof (RndBuff))) != CKR OK)
return;

for (1 = 0; 1 < sizeof(RndBuff); i++)
printf ("$02X%c", RndBuff[i], ((i + 1) $ 16 2 ':' : '"\n'"));

This sample demonstrates how to use the token to create a digital signature. Firstly a
private key is located in the token (the first one found), then the contents of a user
specified file are fed into a hash function in blocks. The results of this hash operation
are then signed using the private key. The signature is then printed out.

Note: This signature can be verified using the corresponding public key by a separate
software module.

Before using this function, the user must be logged in (C_Login) and a key pair must
already have been created.

/* include the common code */
#include "main.c"

/***

* void SampleFunction (void)
dhkhkhhhkhkhkhkhkhhkhkhkhhkhk ko ko hkh ko hhkhk ok hk ok hkhhk ok hkh ok hkhk ok hkhhkhkhkhhkhkk kv hkhkrkhkhkhkhkhkrhhkxhkhkhkhkhk,krhkkxkkx*x

*/
void SampleFunction (void)
{
FILE *fp;
char szFileName[256];
CK BYTE Buffer([512], Hash[64];
CK_ULONG ulLen, ulHashLen, i, count;
CK_OBJECT HANDLE hKey;
CK_MECHANISM Mechanism = { 0, NULL_ PTR, 0 };
CK_OBJECT CLASS priv_object class = CKO PRIVATE KEY;
CK_KEY TYPE priv_key type = CKK RSA;
CK_ATTRIBUTE Template[] = {
{CKA CLASS, &priv object class, sizeof (CK _OBJECT CLASS)}
’
{CKA KEY TYPE, &priv_key type, sizeof (CK KEY TYPE)}
bi

slotevent.c

Sample Code

/*---- Find an RSA Private key ----*/

if ((rv = (*p->C FindObjectsInit) (hSession, Template, 2)) != CKR OK)
return;

if ((rv = (*p->C FindObjects) (hSession, &hKey, 1, &count)) != CKR OK)
return;

if ((rv = (*p->C FindObjectsFinal) (hSession)) != CKR OK)
return;

if (count != 1)

printf ("Error: No keys found in token.\n");

return;

}

/*---- Hash the contents of a file ----*/

Mechanism.mechanism = CKM SHA 1;

if ((rv = (*p->C DigestInit) (hSession, &Mechanism)) != CKR OK)
return;

printf ("Please enter name of file to be signed:");
fgets(szFileName, sizeof (szFileName), stdin);

if ((fp = fopen(szFileName, "rb")) == NULL)

{

printf ("Error: Could not open %s\n", szFileName);

return;
}
while ((ullLen = fread(Buffer, 1, sizeof (Buffer), fp)) != 0)
{
if ((rv = (*p->C DigestUpdate) (hSession, Buffer, ulLen)) != CKR OK)
{
fclose (fp);
return;
}
}
fclose (fp);
ulHashLen = sizeof (Hash);
if ((rv = (*p->C DigestFinal) (hSession, Hash, &ulHashLen)) != CKR OK)
return;
/*---- Sign the hash ----*/

Mechanism.mechanism = CKM RSA PKCS;
ullLen = sizeof (Buffer);

if ((rv = (*p->C_SignInit) (hSession, &Mechanism, hKey)) != CKR OK)
return;

if ((rv = (*p->C _Sign) (hSession, Hash, ulHashLen, Buffer, &ulLen))
!= CKR_OK)
return;

/*---- Print out the signature ----*/

printf ("RSA+SHALl signature of file %s:\n", szFileName);
for (1 = 0; i < ullLen; i++)
printf ("%$02X%c", Buffer([i], ((1 + 1) $ 16 2 ':' : '"\n'));

72

This sample demonstrates how to retrieve information about a “slot event”, that is, the
insertion or withdrawal of a card or token. It includes the getinfo.c function (page 65).

/* include the common code */
#define NO SESSION
#include "main.c"

73 IDGo 500 PKCS#11 Library for Windows User Guide

#include "getinfo.c"

/***

* void SampleFunction (void)
***/

void SampleFunction (void)
{
CK SLOT_ID slotid;
CK_FLAGS flags = 0;
int i;

getslotinfo(slotID);
gettokeninfo (slotID);

for (i=0; 1i<10; i++)
{
if((rv = (*p->C WaitForSlotEvent) (flags, &slotid, NULL PTR)) != CKR OK)
{
CKRLOG ("C WaitForSlotEvent", rv);
return;

getslotinfo(slotID);
gettokeninfo(slotID);

storeit.c

This sample shows how to store and retrieve your own private (PIN protected)
application data in the token. This can be used to store bookmarks, user profiles,
passwords and so on. Note that there is no major advantage in encrypting this data first
since it can be stored with PIN protection. The data is stored in the CKA_VALUE
attribute of a new CKO_DATA object. This data object has the CKA_APPLICATION
field filled in, in order to identify your application and then the CKA_LABEL filled in, in
order to identify the data's purpose within the context of this application. Obviously if
yours is the only application likely to use the token and there is only one type of data,
these fields can be left blank to save space in the token. You can create as many data
objects in the token if there is enough space, but remember that there is an overhead
of a few bytes associated with the existence of each object and each attribute. This
means that 200 bytes of application data split up between 5 objects in the token will
require more storage space than if all 200 bytes were concatenated together in a single
attribute associated with just one object. Note however that memory management
within the token is “highly” optimized.

/* include the common code */
#defiHE‘RW_SESSION
#include "main.c"

/***

* void SampleFunction (void)
***/
void SampleFunction (void)

{

CK_OBJECT HANDLE hObject = NULL PTR;
CK_BBOOL bTrue = TRUE;

CK_BBOOL bPinCodeProtected = TRUE;

CK OBJECT CLASS data class = CKO DATA;
CK_ULONG count;

char szBuffer[256];

CK_ATTRIBUTE Template[] = {
{CKA CLASS, &data class, sizeof (CK OBJECT CLASS)} ,
{CKA APPLICATION, "MyApp", sizeof ("MyApp") - 1} ,
{CKA LABEL, "profileOO", sizeof ("profile0O0") - 1} ,

{CKA PRIVATE, &bPinCodeProtected, sizeof (CK BBOOL)} ,
{CKA TOKEN, &bTrue, sizeof (CK BBOOL)} ,
{CKA VALUE, szBuffer, sizeof (szBuffer) - 1}

}i

/* How many items in Template? */
CK_ULONG ulCount = sizeof (Template) / sizeof (CK ATTRIBUTE);
memset (szBuffer, 0, sizeof (szBuffer));

Sample Code

/*-—-- Check to see if a data object already exists ----*/
if ((rv = (*p->C FindObjectsInit)
(hSession, Template, ulCount - 1)) != CKR OK)
return;
if ((rv = (*p->C FindObjects) (hSession, &hObject, 1, &count)) != CKR OK)
return;
if ((rv = (*p->C FindObjectsFinal) (hSession)) != CKR OK)
return;
/*---- Print out the existing value ----%/

printf ("Current application specific stored data:\n");

if (count != 1)
hObject = NULL PTR;
else
{
if ((rv = (*p->C _GetAttributeValue)

(hSession, hObject, &(Template[ulCount - 1]), 1)) != CKR OK)
return;
printf (szBuffer);
}
/*---- Get new value from user ----%*/
printf ("\nEnter new value or ENTER to skip:\n");
fgets (szBuffer, sizeof(szBuffer), stdin);
if (strlen(szBuffer) == 0)
return;
Template[ulCount - 1].ulValuelLen = strlen(szBuffer);
/*---- Either create or update object with new value ----%*/
if (hObject == NULL PTR)
{
if ((rv = (*p->C CreateObject)
(hSession, Template, ulCount, &hObject)) != CKR OK)
return;
}
else
{
if ((rv = (*p->C SetAttributeValue)
(hSession, hObject, &(Template[ulCount - 1]), 1)) != CKR OK)

return;

printf ("Data successfully stored in token\n");

74

75 IDGo 500 PKCS#11 Library for Windows User Guide

tellme.c

This sample code shows how to retrieve the token information, the slot information and
the session information.

/* include the common code */
include “main.c”
include “getinfo.c”

/**

* void SampleFunction(void)
***/
void SampleFunction (void)
{

getinfo();

getsessioninfo();

getslotinfo(slotID);

gettokeninfo(slotID);

cryptoki.h

This is a cryptoki header file.

/* cryptoki.h include file for PKCS #11. */
$ifndef _ CRYPTOKI H_INC
$define __ CRYPTOKI H_INC

#1f defined(WINDOWS)
#pragma pack (push, cryptoki, 1)

/* Specifies that the function is a DLL entry point. */
#define CK_IMPORT_SPEC _ declspec(dllimport)

/* Define CRYPTOKI EXPORTS during the build of cryptoki libraries. Do not
define it in applications. */

#ifdef CRYPTOKI EXPORTS
/* Specified that the function is an exported DLL entry point. */
#define CK_EXPORT_SPEC _ declspec(dllexport)

#else
#define CK EXPORT SPEC CK IMPORT SPEC

#endif

/* Ensures the calling convention for Win32 builds */
#define CK_CALL SPEC _ cdecl

#define CK_PTR *

#define CK DEFINE FUNCTION (returnType, name) \
returnType CK EXPORT SPEC CK CALL SPEC name

#define CK DECLARE FUNCTION (returnType, name) \
returnType CK EXPORT SPEC CK CALL SPEC name

#define CK DECLARE FUNCTION POINTER (returnType, name) \
returnType CK_IMPORT SPEC (CK CALL SPEC CK PTR name)

#define CK CALLBACK FUNCTION (returnType, name) \
returnType (CK CALL SPEC CK PTR name)

#ifndef NULL_PTR
#define NULL PTR 0

Sample Code 76

#endif

#include "pkcsll.h"
#include "pkcs-11v2-20a3.h"

#pragma pack (pop, cryptoki)
#else /* not windows */
#define CK PTR *

#define CK DEFINE FUNCTION (returnType, name) \
returnType name

#define CK DECLARE FUNCTION (returnType, name) \
returnType name

#define CK DECLARE FUNCTION POINTER (returnType, name) \
returnType (* name)

#define CK CALLBACK_FUNCTION (returnType, name) \
returnType (* name)

#define CK_ENTRY
#ifndef NULL PTR
#define NULL PTR 0

#endif

#include "pkcsll.h"
#include "pkcs-11v2-20a3.h"

#endif

#endif /* CRYPTOKI H INC */

Troubleshooting

The following list covers limitations and minor issues known at the time of release:

Conversion from .NET PKCS#11 2.1 to 2.2

The way in which Root certificates are imported in version 2.1 causes a problem when
you upgrade to version 2.2. The card’s minidriver file system manages this incorrectly,
which means that the card is not interpreted correctly by the host minidriver, even
though it may appear to be fine as far as the card is concerned.

This means that when a card that was personalized under version 2.1 of .NET
PKCS#11 is read for the first time by version 2.2, the IDGo 500 PKCS#11 library
corrects the card’s file system automatically. Unfortunately this correction means that
the garbage collector has to create new files and delete old ones which is resource
intensive and can take a long time (around 20 seconds for each certificate that needs
to be moved).

Note: This automatic correction of the file system is only performed once - the first
time the card is read by IDPrime .NET PKCS#11 2.2.

Performance Problems With Memory Management

The IDPrime .NET card can be slow when performing operations that require using the
card’s memory such as, for example, loading a large number of certificates or keys, or
large PKCS#11 data objects. This is mainly operations that involve the garbage
collector.

Mozilla Firefox and Thunderbird

Simultaneous Smart Cards

When the end-user browses the cryptographic modules on either Firefox or
Thunderbird with two smart cards connected and logs on with one of the smart cards,
Firefox/Thunderbird considers both smart cards as being logged on.

Fast User Switching

If the end-user switches from one account to another while Firefox/Thunderbird is
running, the PC/SC context is broken.

Troubleshooting 78

Firefox/ Thunderbird must be restarted after the switch to communicate with the smart
card.

Remote Desktop Connection

The end-user must log off from any active remote desktop connection before accessing
it from the host.

CheckPoint VPN Client NGX

On a Windows 64-bit OS, CheckPoint is not able to enroll the end-user on the smart
card.

Citrix Server

Applications using the IDGo 500 PKCS#11 library (such as Firefox) remain in memory
after the end-user closes the application. Check the latest hotfix on the Citrix web site.

Adobe Acrobat Reader

Adobe Acrobat Reader does not support certificate importation.

Configuring PKCS#11 in
Mozilla

Firefox

This appendix describes how to configure Mozilla applications so they can
communicate with the PKCS#11 security module.

This section describes the necessary configuration for Firefox. You only need to do this
once.

To configure Firefox to recognize the PKCS#11 security module:

1 Make sure your card/token is connected.

2 Open the Mozilla Firefox browser and from the Tools menu choose Options.

3 Click the Advanced icon, then the Encryption tab as shown in “Figure 26”.

Configuring PKCS#11 in Mozilla 80

Figure 26 - Mozilla Firefox Encryption Options Dialog

X]

| Options
i O @ B e 8 5

Mair Tabs Content Feeds Privacy Security Advanced

General | Metwork | Update | Encryption |

Protocols

Use TLS 1.0

Certificates
Whier a web site requires a certificate;
® Select one automatically © Ask me every time

Wiew Certificates] ’R_evocation Lists] ’ Werification] ISecurity Devicesl

{ (074 H Cancel H Help]

4 In Certificates, choose one of the options for the action to take when a web site
requires a certificate:

— Select one automatically
— Ask me every time

5 Click Security Devices to display the Device Manager window. This displays the
modules currently available as shown in “Figure 27”.

81

IDGo 500 PKCS#11 Library for Windows User Guide

Figure 27 - Device Manager

© Device Manager

Security Modules and Devices

EINSS [nternal PKCS #11 Module

(seneric Crypto Services

Software Security Device
= Gemalto PKCS#11 Module

Gemplus USE Smart Card Reader O
B Builtin Roots Module

Builtin Cbiject Token

Details

Value

Load

Enable EIPS

6 Click the Load button to the right in the dialog. This displays the Load PKCS#11

Device window, as shown in “Figure 28”.

Figure 28 - Load PKCS#11 Device Window

£ Load PKCS#11 Device

Enter the information For the module vou wank to add.

Module Mame: | emalto PKCS#11 Module For JNET]

Module Filename:; ||:|:'|,D|:u:uments and Settir| [Browse. ..]

l [Cancel]

7 Enter a Module Name.

8 In Module filename, use the Browse button to select the .dll file as follows:
— C:\Program Files\Gemalto\DotNet PKCS11\gtop11dotnet.dll - for 32-bit

versions of Windows

— C:\Program Files\Gemalto\DotNet PKCS11\gtop11dotnet64.dll - for 64-bit

versions of Windows

Note: If you are running a 64-bit version of Windows, the location is “Program Files

(x86)” instead of “Program Files”.

9 Click OK. The “Confirm” dialog appears asking if you are sure that you want to

install the security module.
10 Click OK.

A brief progress dialog appears indicating that the module is being loaded.

When this is completed an “Alert” indicates that the module has been installed.

11 Click OK to close this Alert.

Configuring PKCS#11 in Mozilla 82

The Device Manager indicates the presence of the new module as shown in
“Figure 29

Figure 29 - Device Manager After Module Configuration

) Device Manager

Security Modules and Devices Details _ Walue
[= M55 Internal PKCS #11 Module Module NS5 Internal PKCS #11 Module
Genetic Crypto Services Path

software Security Device
[=I Builtin Rooks Maodule
Builtin Object Token

=) Gemalta PKCS#11 Madule

GemSAFE
(=] Gemalko PKCS#11 Module For MET Enable FIPS

Gemplus USE Smart Card Reader 0

Note: The example shown in “Figure 29” shows “smart card reader” because no card
is inserted in the reader. If a card is inserted at the time you are loading the module,
then the name of the card appears instead of the reader.

83 IDGo 500 PKCS#11 Library for Windows User Guide

Thunderbird

You only need to make this configuration once in Thunderbird.

The procedure to configure Thunderbird is very similar to that of Firefox, but is slightly
different.

To configure Thunderbird to recognize the PKCS#11 security module:

1

a h~h WODN

Make sure your smart card/token is connected.

Start Mozilla Thunderbird.

Enter your password if you are prompted for it and click on OK.
From the Tools menu, choose Options.

In the dialog box that opens, click the Advanced icon, then the Certificates tab to
display the settings as shown in “Figure 30”.

Figure 30 - Thunderbird - Certificates Tab

6

Options

zeneral | Metwark & Disc Space | Update] Certificates |
Manage certificates, revocation lists, certificate verification and security devices,
| Wiew Certificates | [Rgvu:u:atiu:un Lisks] [Yerification] [Secgrity Devices
a4] [Cancel

The rest of the procedure is the same as that described for Firefox. Continue from
step 5 on page 80.

This new module will be used with all e-mail you send with Thunderbird.

The Minidriver Manager Tool

The Minidriver Manager tool is an R&D tool developed by Gemailto. It has been placed
on the http://www.gemalto.com/products/dotnet_card/ web site to provide some
additional useful help to customers. As such it is not officially supported by Gemalto.

In order to use the Minidriver Manager tool, the minidriver dll must be installed on your
computer.

For Windows XP, Vista, Server 2003 and Server 2008, you will need to install the
minidriver dll manually.

For Windows 7 and Windows Server 2008 R2, the dll is installed automatically by the
Windows “plug and play” feature when you insert the IDPrime .NET card. However if
your administrator has blocked this function on your computer, it will not work and you
will need to install the minidriver dil manually.

For instructions on how to install the minidriver dll manually, please refer to the IDPrime
.NET Smart Cards in a Windows Environment Administration and User Guide.

You can download the Minidriver Manager tool from:

http://www.gemalto.com/products/dotnet_card/resources/development.html?toggler=0

http://www.gemalto.com/products/dotnet_card/resources/development.html?toggler=0
http://www.gemalto.com/products/dotnet_card/resources/development.html?toggler=0

The .NET Utilities Tool

The .NET Utilities tool is an R&D tool developed by Gemalto. It has been placed on the
https://www.netsolutions.gemalto.com/netutils/Default.aspx web site to provide some
additional useful help to customers. As such it is not officially supported by Gemalto.

One advantage of using the .NET utilities tool is that it does not require any files to be
installed on your computer.

To access the .NET Utilities tool:

1 Click https://www.netsolutions.gemalto.com/netutils/Default.aspx. This displays the
following security warning:

Figure 31 - .NET Utilities Portal — Security Warning

Security Warning |X|
The following wehsite wants to access your smart card using SConnect.

https:/fwww.netsoluti Ito.com

!

This will let the website communicate with your smart card. Do you want

to allow this? (What is this?)

[] Remember my decision for this website

SConnect v1.10.62.0 [Allow] I Deny |

2 Click Allow.
Figure 32 - .NET Utilities Portal Welcome Window

.NET Utilities

Change PIN
Untlock PIN Welcome to the .NET Utilities portal 3

Device Information

Manage Certificates

|

I | =

3 Click the operation you want to perform in the panel on the left of the portal, such
as Change PIN.

4 Insert your IDPrime .NET card when prompted and follow the instructions.

https://www.netsolutions.gemalto.com/netutils/Default.aspx
https://www.netsolutions.gemalto.com/netutils/Default.aspx

Abbreviations

API
CA
CAPI
CCID

CSP
CSN
DAS
MSB
os
PC/SC

PIN
PKCS
PKCS#11

R/O
R/W
RSA

S/MIME
SO
SSL

vSEC:CMS

Application Programming Interface
Certificate Authority
Cryptographic Application Programming Interface

A driver that is needed to communicate with a IDPrime .NET
smart card.

Cryptographic Service Provider
Card Serial Number
Device Administration Service

Most Significant Byte(s)

D'
=
=]
>
O
O
(@)
<

Operating System

personal computer/smart card - a specification used in
communication between a PC and a smart card.

Personal Identification Number
Public Key Cryptography Standard

Public Key Cryptography Standard #11. For further
information about this and other PKCS standards, refer to
the RSA Laboratories web sit at http://www.rsa.com/
rsalabs/

Read only (access)
Read and write (access)

Rivest, Shamir, Adleman (inventors of public key
cryptography standards)

Secure/Multipurpose Internet Mail Extensions
Security Officer

Secure Sockets Layer
A protocol, v.3.0.v, for securing TCP/IP sessions

Versatile Security Card Management System

http://www.rsa.com/rsalabs
http://www.rsa.com/rsalabs

87

Glossary

Admin PIN

Algorithm

Attribute
Base (CSP)

Certificate

Certificate
Authority

Cryptography

Cryptoki

Device
Administration
Service (DAS)

Digital Signature

Encryption

Key

Key Length

PAM PKCS#11
module

PKCS#11

Pluggable
Authentication
Module (PAM)

Public Key Crypto
system

IDGo 500 PKCS#11 Library for Windows User Guide

A common name for the SO PIN.

A mathematical formula used to perform computations that
can be used for security purposes.

A characteristic of a token object.

Microsoft's default software library that implements the
Cryptographic Application Programming Interface (CAPI).

A certificate provides identification for secure transactions. It
consists of a public key and other data, all of which have been
digitally signed by a CA. It is a condition of access to secure e-
mail or to secure Web sites.

An entity with the authority and methods to certify the identity
of one or more parties in an exchange (an essential function in
public key crypto systems).

The science of transforming confidential information to make it
unreadable to unauthorized parties.

The Cryptographic Token Interface defined in the PKCS#11
standard. It is a platform independent API to cryptographic
tokens.

A Gemalto web-hosted service used to manage smart card
devices.

A data string produced using a Public Key Crypto system to
prove the identity of the sender and the integrity of the
message.

A cryptographic procedure whereby a legible message is
encrypted and made illegible to all but the holder of the
appropriate cryptographic key.

A value that is used with a cryptographic algorithm to encrypt,
decrypt, or sign data. Secret key crypto systems use only one
secret key. Public key crypto systems use a public key to
encrypt data and a private key to decrypt data.

The number of bits forming a key. The longer the key, the
more secure the encryption. Government regulations limit the
length of cryptographic keys.

A Linux-PAM login module that allows a X.509 certificate
based user login.

A software library that implements the Cryptoki

A mechanism to integrate multiple low-level authentication
schemes into a high-level application programming interface
(API), which allows programs that rely on authentication to be
written independently of the underlying authentication scheme.

A cryptographic system that uses two different keys (public
and private) for encrypting data. The most well-known public
key algorithm is RSA.

Session

Session object

SO PIN
SSL

SSL Handshake

S/MIME

Token

Token object

Versatile Security
Card Management
System
(vSEC:CMS)

Terminology 88

A logical connection between an application and a token.

An object that exists during the time of a session only, it is
destroyed when the session is closed.

Security Officer PIN - the PIN used to unblock the card.

Secure Sockets Layer: A Security protocol used between
servers and browsers for secure Web sessions.

The SSL handshake, which takes place each time you start a
secure Web session, identifies the server. This is
automatically performed by your browser.

A Standard offline message format for use in secure e-mail
applications.

In a security context, a token is a hardware object like a smart
card, but it could also be a pluggable software module
designed to interact with a specific hardware module, such as
a smart card. Token-based authentication provides enhanced
security because success depends on a physical identifier (the
smart card) and a personal identification number (PIN).

An object that exists in the token. It can only be deleted during
a read/write session.

A card management system developed by Gemalto’s partner
Versatile security and embedded in some of Gemalto’s smart
card devices.

	IDGo 500 PKCS#11 Library for Windows
	Preface
	Who Should Read This Book
	Documentation
	Conventions
	Typographical Conventions

	Additional Resources
	For Further Help
	If You Find an Error

	1 Overview
	IDPrime .NET Smart Cards
	Cryptoki
	IDGo 500 PKCS#11 Library
	Supported Platforms and Applications
	Windows
	Linux
	Mac OS
	Applications Tested

	2 PKCS#11 Specifics
	Key Sizes Supported
	Number of Simultaneous Reader Connections Supported
	Instant Detection of .NET USB Devices
	File Cache
	Configuration File
	PKCS#11 Methods Supported
	Accessing Objects According to Session Type
	Session Types
	Object Types
	Authentication

	Supported PKCS#11 Objects and Attributes
	Cryptographic Mechanisms Supported
	Cryptographic Algorithms
	Hash Algorithms

	Reading the Card Serial Number
	Product Limitations
	The Security Officer PIN

	3 Installation
	System Requirements
	Computer
	Operating Systems
	Peripherals

	Installing the IDGo 500 PKCS#11 Library
	Pre-requisites
	Installing the IDGo 500 PKCS#11 Library
	Configuring the PKCS#11 Security Module

	Uninstalling the IDGo 500 PKCS#11 Library

	4 Tasks
	How to Get a Certificate
	How to Import a Certificate in the IDPrime .NET Card
	How to Delete a Certificate from the IDPrime .NET Card
	How to View the Details of a Certificate in an IDPrime .NET Card
	How to Unblock a User PIN
	How to Change a User PIN
	How to Use E-mail Securely
	About Secure E-mail
	Working with Mozilla Thunderbird.

	How to View Secure Web Sites
	Mozilla Firefox

	A Sample Code
	Cryptoki Header Files
	Sample Code Files
	main.c
	getinfo.c
	deleteall.c
	dumpit.c
	enroll.c
	genkey.c
	loadkey.c
	pincode.c
	random.c
	signit.c
	slotevent.c
	storeit.c
	tellme.c
	cryptoki.h

	B Troubleshooting
	Conversion from .NET PKCS#11 2.1 to 2.2
	Performance Problems With Memory Management
	Mozilla Firefox and Thunderbird
	Simultaneous Smart Cards
	Fast User Switching

	Remote Desktop Connection
	CheckPoint VPN Client NGX
	Citrix Server
	Adobe Acrobat Reader

	C Configuring PKCS#11 in Mozilla
	Firefox
	Thunderbird

	D The Minidriver Manager Tool
	E The .NET Utilities Tool
	Terminology
	Abbreviations
	Glossary

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

